-
2
-
-
84863534141
-
Kernels for vector-valued functions: A review
-
Mauricio Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions: A review. Foundations and Trends in Machine Learning, 4(3):195-266, 2012. doi: 10.1561/2200000036.
-
(2012)
Foundations and Trends in Machine Learning
, vol.4
, Issue.3
, pp. 195-266
-
-
Alvarez, M.1
Rosasco, L.2
Lawrence, N.D.3
-
3
-
-
84965153826
-
Scalable inference for gaussian process models with black-box likelihoods
-
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Curran Associates, Inc
-
Amir Dezfouli and Edwin V Bonilla. Scalable inference for Gaussian process models with black-box likelihoods. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 1414-1422. Curran Associates, Inc., 2015.
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
, pp. 1414-1422
-
-
Dezfouli, A.1
Bonilla, E.V.2
-
4
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
July
-
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159, July 2011. ISSN 15324435.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
5
-
-
84937892781
-
Distributed variational inference in sparse gaussian process regression and latent variable models
-
Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Cambridge, MA
-
Yarin Gal, Mark van der Wilk, and Carl E. Rasmussen. Distributed variational inference in sparse Gaussian process regression and latent variable models. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27, Cambridge, MA, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
-
-
Gal, Y.1
van der Wilk, M.2
Rasmussen, C.E.3
-
6
-
-
85053970271
-
-
CRC Press, November
-
Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin. Bayesian Data Analysis, Third Edition. CRC Press, November 2013. ISBN 9781439840955.
-
(2013)
Bayesian Data Analysis, Third Edition
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Dunson, D.B.4
Vehtari, A.5
Rubin, D.B.6
-
7
-
-
0040424226
-
Regression with input-dependent noise: A gaussian process treatment
-
Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Cambridge, MA, MIT Press
-
Paul W. Goldberg, Christopher K. I. Williams, and Christopher M. Bishop. Regression with input-dependent noise: A Gaussian process treatment. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing Systems, volume 10, pages 493-499, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 493-499
-
-
Goldberg, P.W.1
Williams, C.K.I.2
Bishop, C.M.3
-
9
-
-
84888155846
-
Gaussian processes for big data
-
Ann Nicholson and Padhraic Smyth, editors, AUAI Press
-
James Hensman, Nicold Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Ann Nicholson and Padhraic Smyth, editors, Uncertainty in Artificial Intelligence, volume 29. AUAI Press, 2013a.
-
(2013)
Uncertainty in Artificial Intelligence
, vol.29
-
-
Hensman, J.1
Fusi, N.2
Lawrence, N.D.3
-
10
-
-
84883634438
-
Hierarchical bayesian modelling of gene expression time series across irregularly sampled replicates and clusters
-
James Hensman, Neil D. Lawrence, and Magnus Rattray. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics, 14(252), 2013b. doi: doi:10.1186/1471-2105-14-252.
-
(2013)
BMC Bioinformatics
, vol.14
, Issue.252
-
-
Hensman, J.1
Lawrence, N.D.2
Rattray, M.3
-
11
-
-
85040231097
-
Scalable variational gaussian process classification
-
In San Diego, California, USA, May
-
James Hensman, Alexander G D G Matthews, and Zoubin Ghahramani. Scalable variational Gaussian process classification. In In 18th International Conference on Artificial Intelligence and Statistics, pages 1-9, San Diego, California, USA, May 2015.
-
(2015)
18th International Conference on Artificial Intelligence and Statistics
, pp. 1-9
-
-
Hensman, J.1
Matthews, A.G.D.G.2
Ghahramani, Z.3
-
12
-
-
84937846159
-
Mind the nuisance: Gaussian process classification using privileged noise
-
Z. Ghahramani, M. Welling, C. Cortes, Lawrence, and K.Q. Weinberger, editors, Curran Associates, Inc
-
Daniel Hernandez-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H Lampert, and Novi Quadrianto. Mind the nuisance: Gaussian process classification using privileged noise. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 837-845. Curran Associates, Inc., 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 837-845
-
-
Hernandez-Lobato, D.1
Sharmanska, V.2
Kersting, K.3
Lampert, C.H.4
Quadrianto, N.5
-
13
-
-
84878919168
-
Stochastic variational inference
-
Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14:1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
14
-
-
84855386927
-
Robust gaussian process regression with a student-t likelihood
-
November
-
Pasi Jylänki, Jarno Vanhatalo, and Aki Vehtari. Robust Gaussian process regression with a Student-t likelihood. J. Mach. Learn. Res., 12:3227-3257, November 2011. ISSN 1532-4435.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 3227-3257
-
-
Jylänki, P.1
Vanhatalo, J.2
Vehtari, A.3
-
17
-
-
80053452289
-
Variational heteroscedastic gaussian process regression
-
Lise Getoor and Tobias Scheffer, editors, New York, NY, USA, June ACM
-
Miguel Lazaro-Gredilla and Michalis Titsias. Variational heteroscedastic Gaussian process regression. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML ’11, pages 841-848, New York, NY, USA, June 2011. ACM. ISBN 978-1-4503-0619-5.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML ’11
, pp. 841-848
-
-
Lazaro-Gredilla, M.1
Titsias, M.2
-
18
-
-
21344470500
-
Semiparametric analysis of general additive-multiplicative hazard models for counting processes
-
10
-
D. Y. Lin and Zhiliang Ying. Semiparametric analysis of general additive-multiplicative hazard models for counting processes. The Annals o f Statistics, 23(5):1712-1734, 10 1995. doi: 10. 1214/aos/1176324320.
-
(1995)
The Annals O F Statistics
, vol.23
, Issue.5
, pp. 1712-1734
-
-
Lin, D.Y.1
Ying, Z.2
-
19
-
-
84919792106
-
Discovering latent network structure in point process data
-
Scott Linderman and Ryan Adams. Discovering latent network structure in point process data. In ICML, 2014.
-
(2014)
ICML
-
-
Linderman, S.1
Adams, R.2
-
21
-
-
84937860160
-
Automated variational inference for gaussian process models
-
Z. Ghahramani, M. Welling, C. Cortes, Lawrence, and K.Q. Weinberger, editors, Curran Associates, Inc
-
Trung V Nguyen and Edwin V Bonilla. Automated variational inference for Gaussian process models. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1404-1412. Curran Associates, Inc., 2014.
-
(2014)
Advances in Neural Information Processing Systems
, vol.27
, pp. 1404-1412
-
-
Nguyen, T.V.1
Bonilla, E.V.2
-
22
-
-
63249135864
-
The variational gaussian approximation revisited
-
Manfred Opper and Cedric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
24
-
-
0001995852
-
Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion)
-
B. W. Silverman. Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). Journal of the Royal Statistical Society, B, 47(1):1-52, 1985.
-
(1985)
Journal of the Royal Statistical Society, B
, vol.47
, Issue.1
, pp. 1-52
-
-
Silverman, B.W.1
-
25
-
-
33646380511
-
Sparse gaussian processes using pseudo-inputs
-
Yair Weiss, Bernhard Scholkopf, and John C. Platt, editors, Cambridge, MA, MIT Press
-
Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Yair Weiss, Bernhard Scholkopf, and John C. Platt, editors, Advances in Neural Information Processing Systems, volume 18, Cambridge, MA, 2006. MIT Press.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
-
-
Snelson, E.1
Ghahramani, Z.2
-
26
-
-
84898943255
-
Warped gaussian processes
-
Sebastian Thrun, Lawrence Saul, and Bernhard Scholkopf, editors, Cambridge, MA, MIT Press
-
Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani. Warped Gaussian processes. In Sebastian Thrun, Lawrence Saul, and Bernhard Scholkopf, editors, Advances in Neural Information Processing Systems, volume 16, Cambridge, MA, 2004. MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
-
-
Snelson, E.1
Rasmussen, C.E.2
Ghahramani, Z.3
-
28
-
-
84860609370
-
Variational learning of inducing variables in sparse gaussian processes
-
David van Dyk and Max Welling, editors, Clearwater Beach, FL, 16-18 April JMLR W&CP5
-
Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In David van Dyk and Max Welling, editors, Proceedings of the Twelfth International Workshop on Artificial Intelligence and Statistics, volume 5, pages 567-574, Clearwater Beach, FL, 16-18 April 2009. JMLR W&CP5.
-
(2009)
Proceedings of the Twelfth International Workshop on Artificial Intelligence and Statistics
, vol.5
, pp. 567-574
-
-
Titsias, M.K.1
-
30
-
-
80052637232
-
Demodulation as probabilistic inference
-
Richard E. Turner and Maneesh Sahani. Demodulation as probabilistic inference. IEEE Transactions on Audio, Speech, and Language Processing, 19:2398-2411, 2011.
-
(2011)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.19
, pp. 2398-2411
-
-
Turner, R.E.1
Sahani, M.2
-
31
-
-
84877621994
-
GPstuff: Bayesian modeling with gaussian processes
-
Jarno Vanhatalo, Jaakko Riihimaki, Jouni Hartikainen, Pasi Jylanki, Ville Tolvanen, and Aki Vehtari. GPstuff: Bayesian modeling with Gaussian processes. Journal of Machine Learning Research, 14(1):1175—1179, 2013. http://mloss.org/software/view/451/.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1175-1179
-
-
Vanhatalo, J.1
Riihimaki, J.2
Hartikainen, J.3
Jylanki, P.4
Tolvanen, V.5
Vehtari, A.6
|