메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1431-1440

Chained Gaussian processes

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GAUSSIAN NOISE (ELECTRONIC);

EID: 85032981175     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (57)

References (31)
  • 3
    • 84965153826 scopus 로고    scopus 로고
    • Scalable inference for gaussian process models with black-box likelihoods
    • C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Curran Associates, Inc
    • Amir Dezfouli and Edwin V Bonilla. Scalable inference for Gaussian process models with black-box likelihoods. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 1414-1422. Curran Associates, Inc., 2015.
    • (2015) Advances in Neural Information Processing Systems , vol.28 , pp. 1414-1422
    • Dezfouli, A.1    Bonilla, E.V.2
  • 4
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • July
    • John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121-2159, July 2011. ISSN 15324435.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 5
    • 84937892781 scopus 로고    scopus 로고
    • Distributed variational inference in sparse gaussian process regression and latent variable models
    • Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Cambridge, MA
    • Yarin Gal, Mark van der Wilk, and Carl E. Rasmussen. Distributed variational inference in sparse Gaussian process regression and latent variable models. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27, Cambridge, MA, 2014.
    • (2014) Advances in Neural Information Processing Systems , vol.27
    • Gal, Y.1    van der Wilk, M.2    Rasmussen, C.E.3
  • 7
    • 0040424226 scopus 로고    scopus 로고
    • Regression with input-dependent noise: A gaussian process treatment
    • Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Cambridge, MA, MIT Press
    • Paul W. Goldberg, Christopher K. I. Williams, and Christopher M. Bishop. Regression with input-dependent noise: A Gaussian process treatment. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing Systems, volume 10, pages 493-499, Cambridge, MA, 1998. MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 493-499
    • Goldberg, P.W.1    Williams, C.K.I.2    Bishop, C.M.3
  • 9
    • 84888155846 scopus 로고    scopus 로고
    • Gaussian processes for big data
    • Ann Nicholson and Padhraic Smyth, editors, AUAI Press
    • James Hensman, Nicold Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Ann Nicholson and Padhraic Smyth, editors, Uncertainty in Artificial Intelligence, volume 29. AUAI Press, 2013a.
    • (2013) Uncertainty in Artificial Intelligence , vol.29
    • Hensman, J.1    Fusi, N.2    Lawrence, N.D.3
  • 10
    • 84883634438 scopus 로고    scopus 로고
    • Hierarchical bayesian modelling of gene expression time series across irregularly sampled replicates and clusters
    • James Hensman, Neil D. Lawrence, and Magnus Rattray. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters. BMC Bioinformatics, 14(252), 2013b. doi: doi:10.1186/1471-2105-14-252.
    • (2013) BMC Bioinformatics , vol.14 , Issue.252
    • Hensman, J.1    Lawrence, N.D.2    Rattray, M.3
  • 12
    • 84937846159 scopus 로고    scopus 로고
    • Mind the nuisance: Gaussian process classification using privileged noise
    • Z. Ghahramani, M. Welling, C. Cortes, Lawrence, and K.Q. Weinberger, editors, Curran Associates, Inc
    • Daniel Hernandez-Lobato, Viktoriia Sharmanska, Kristian Kersting, Christoph H Lampert, and Novi Quadrianto. Mind the nuisance: Gaussian process classification using privileged noise. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 837-845. Curran Associates, Inc., 2014.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 837-845
    • Hernandez-Lobato, D.1    Sharmanska, V.2    Kersting, K.3    Lampert, C.H.4    Quadrianto, N.5
  • 14
    • 84855386927 scopus 로고    scopus 로고
    • Robust gaussian process regression with a student-t likelihood
    • November
    • Pasi Jylänki, Jarno Vanhatalo, and Aki Vehtari. Robust Gaussian process regression with a Student-t likelihood. J. Mach. Learn. Res., 12:3227-3257, November 2011. ISSN 1532-4435.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 3227-3257
    • Jylänki, P.1    Vanhatalo, J.2    Vehtari, A.3
  • 18
    • 21344470500 scopus 로고
    • Semiparametric analysis of general additive-multiplicative hazard models for counting processes
    • 10
    • D. Y. Lin and Zhiliang Ying. Semiparametric analysis of general additive-multiplicative hazard models for counting processes. The Annals o f Statistics, 23(5):1712-1734, 10 1995. doi: 10. 1214/aos/1176324320.
    • (1995) The Annals O F Statistics , vol.23 , Issue.5 , pp. 1712-1734
    • Lin, D.Y.1    Ying, Z.2
  • 19
    • 84919792106 scopus 로고    scopus 로고
    • Discovering latent network structure in point process data
    • Scott Linderman and Ryan Adams. Discovering latent network structure in point process data. In ICML, 2014.
    • (2014) ICML
    • Linderman, S.1    Adams, R.2
  • 21
    • 84937860160 scopus 로고    scopus 로고
    • Automated variational inference for gaussian process models
    • Z. Ghahramani, M. Welling, C. Cortes, Lawrence, and K.Q. Weinberger, editors, Curran Associates, Inc
    • Trung V Nguyen and Edwin V Bonilla. Automated variational inference for Gaussian process models. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1404-1412. Curran Associates, Inc., 2014.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 1404-1412
    • Nguyen, T.V.1    Bonilla, E.V.2
  • 22
    • 63249135864 scopus 로고    scopus 로고
    • The variational gaussian approximation revisited
    • Manfred Opper and Cedric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 24
    • 0001995852 scopus 로고
    • Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion)
    • B. W. Silverman. Some aspects of the spline smoothing approach to non-parametric regression curve fitting (with discussion). Journal of the Royal Statistical Society, B, 47(1):1-52, 1985.
    • (1985) Journal of the Royal Statistical Society, B , vol.47 , Issue.1 , pp. 1-52
    • Silverman, B.W.1
  • 25
    • 33646380511 scopus 로고    scopus 로고
    • Sparse gaussian processes using pseudo-inputs
    • Yair Weiss, Bernhard Scholkopf, and John C. Platt, editors, Cambridge, MA, MIT Press
    • Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Yair Weiss, Bernhard Scholkopf, and John C. Platt, editors, Advances in Neural Information Processing Systems, volume 18, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural Information Processing Systems , vol.18
    • Snelson, E.1    Ghahramani, Z.2
  • 26
    • 84898943255 scopus 로고    scopus 로고
    • Warped gaussian processes
    • Sebastian Thrun, Lawrence Saul, and Bernhard Scholkopf, editors, Cambridge, MA, MIT Press
    • Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani. Warped Gaussian processes. In Sebastian Thrun, Lawrence Saul, and Bernhard Scholkopf, editors, Advances in Neural Information Processing Systems, volume 16, Cambridge, MA, 2004. MIT Press.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Snelson, E.1    Rasmussen, C.E.2    Ghahramani, Z.3
  • 28
    • 84860609370 scopus 로고    scopus 로고
    • Variational learning of inducing variables in sparse gaussian processes
    • David van Dyk and Max Welling, editors, Clearwater Beach, FL, 16-18 April JMLR W&CP5
    • Michalis K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In David van Dyk and Max Welling, editors, Proceedings of the Twelfth International Workshop on Artificial Intelligence and Statistics, volume 5, pages 567-574, Clearwater Beach, FL, 16-18 April 2009. JMLR W&CP5.
    • (2009) Proceedings of the Twelfth International Workshop on Artificial Intelligence and Statistics , vol.5 , pp. 567-574
    • Titsias, M.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.