메뉴 건너뛰기




Volumn 23, Issue 1, 2014, Pages 74-90

Joint latent class models for longitudinal and time-to-event data: A review

Author keywords

Brier score; joint model; longitudinal data; mixture model; predictive accuracy; prognosis; prostate cancer

Indexed keywords

CANCER GROWTH; CANCER RADIOTHERAPY; CANCER RECURRENCE; CHI SQUARE TEST; CLASSIFICATION; CONTROLLED STUDY; FOLLOW UP; JOINT LATENT CLASS MODEL; LONGITUDINAL MARKER; LONGITUDINAL STUDY; MAXIMUM LIKELIHOOD METHOD; MEASUREMENT ACCURACY; PREDICTION; PROPORTIONAL HAZARDS MODEL; PROSTATE CANCER; REVIEW; SHARED RANDOM EFFECT MODEL; STATISTICAL MODEL; TIME TO EVENT;

EID: 84892600752     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280212445839     Document Type: Review
Times cited : (209)

References (38)
  • 1
    • 0030893266 scopus 로고    scopus 로고
    • A joint model for survival and longitudinal data measured with error
    • Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997 ; 53 (1). 330-339
    • (1997) Biometrics , vol.53 , Issue.1 , pp. 330-339
    • Wulfsohn, M.S.1    Tsiatis, A.A.2
  • 2
    • 70149108170 scopus 로고    scopus 로고
    • Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of post-treatment PSA: A joint modelling approach
    • Proust-Lima C, Taylor JMG. Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures of post-treatment PSA: a joint modelling approach. Biostatistics. 2009 ; 10: 535-549
    • (2009) Biostatistics , vol.10 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.M.G.2
  • 3
    • 42349110012 scopus 로고    scopus 로고
    • Individual prediction in prostate cancer studies using a joint longitudinal survival-cure model
    • Yu M, Taylor JMG, Sandler HM. Individual prediction in prostate cancer studies using a joint longitudinal survival-cure model. J Am Stat Assoc. 2008 ; 103: 178-187
    • (2008) J Am Stat Assoc , vol.103 , pp. 178-187
    • Yu, M.1    Taylor, J.M.G.2    Sandler, H.M.3
  • 4
    • 77749317069 scopus 로고
    • Covariate measurement errors and parameter estimation in cox's failure time regression model
    • Prentice RL. Covariate measurement errors and parameter estimation in cox's failure time regression model. Biometrika. 1982 ; 69 (2). 331-342
    • (1982) Biometrika , vol.69 , Issue.2 , pp. 331-342
    • Prentice, R.L.1
  • 5
    • 14144254555 scopus 로고    scopus 로고
    • Individualized predictions of disease progression following radiation therapy for prostate cancer
    • Taylor JMG, Yu M, Sandler HM. Individualized predictions of disease progression following radiation therapy for prostate cancer. J Clin Oncol. 2005 ; 23 (4). 816-825
    • (2005) J Clin Oncol , vol.23 , Issue.4 , pp. 816-825
    • Taylor, J.M.G.1    Yu, M.2    Sandler, H.M.3
  • 6
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000 ; 1 (4). 465-480
    • (2000) Biostatistics , vol.1 , Issue.4 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 7
    • 80052787679 scopus 로고    scopus 로고
    • Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data
    • Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics. 2011 ; 67 (3). 819-829
    • (2011) Biometrics , vol.67 , Issue.3 , pp. 819-829
    • Rizopoulos, D.1
  • 8
    • 78651422985 scopus 로고    scopus 로고
    • A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects
    • Huang X, Li G, Elashoff RM, Pan J. A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Anal. 2011 ; 17 (1). 80-100
    • (2011) Lifetime Data Anal , vol.17 , Issue.1 , pp. 80-100
    • Huang, X.1    Li, G.2    Elashoff, R.M.3    Pan, J.4
  • 9
    • 79955847737 scopus 로고    scopus 로고
    • A bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event
    • Rizopoulos D, Ghosh P. A bayesian semiparametric multivariate joint model for multiple longitudinal outcomes and a time-to-event. Stat Med. 2011 ; 30 (12). 1366-1380
    • (2011) Stat Med , vol.30 , Issue.12 , pp. 1366-1380
    • Rizopoulos, D.1    Ghosh, P.2
  • 10
    • 0037469108 scopus 로고    scopus 로고
    • Latent class models for classification
    • Vermunt JK, Magidson J. Latent class models for classification. Comput Stat Data Anal. 2003 ; 41 (3-4). 531-537
    • (2003) Comput Stat Data Anal , vol.41 , Issue.34 , pp. 531-537
    • Vermunt, J.K.1    Magidson, J.2
  • 11
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin H, Turnbull BW, McCulloch CE, Slate EH. Latent class models for joint analysis of longitudinal biomarker and event process data: application to longitudinal prostate-specific antigen readings and prostate cancer. J Am Stat Assoc. 2002 ; 97: 53-65
    • (2002) J Am Stat Assoc , vol.97 , pp. 53-65
    • Lin, H.1    Turnbull, B.W.2    McCulloch, C.E.3    Slate, E.H.4
  • 12
    • 58749099434 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach
    • Proust-Lima C, Joly P, Jacqmin-Gadda H. Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach. Comput Stat Data Anal. 2009 ; 53 (4). 1142-1154
    • (2009) Comput Stat Data Anal , vol.53 , Issue.4 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Jacqmin-Gadda, H.3
  • 13
    • 38149135632 scopus 로고    scopus 로고
    • A joint latent class changepoint model to improve the prediction of time to graft failure
    • Garre FG, Zwinderman AH, Geskus RB, Sijpkens YWJ. A joint latent class changepoint model to improve the prediction of time to graft failure. J Roy Stat Soc Ser A. 2008 ; 171 (1). 299-308
    • (2008) J Roy Stat Soc ser A , vol.171 , Issue.1 , pp. 299-308
    • Garre, F.G.1    Zwinderman, A.H.2    Geskus, R.B.3    Sijpkens, Y.W.J.4
  • 14
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal gaussian data
    • Beunckens C, Molenberghs G, Verbeke G, Mallinckrodt C. A latent-class mixture model for incomplete longitudinal gaussian data. Biometrics. 2008 ; 64 (1). 96-105
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 15
    • 48749115069 scopus 로고    scopus 로고
    • Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts
    • Dantan E, Proust-Lima C, Letenneur L, Jacqmin-Gadda H. Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts. Int J Biostat. 2008 ; 4 :
    • (2008) Int J Biostat , vol.4
    • Dantan, E.1    Proust-Lima, C.2    Letenneur, L.3    Jacqmin-Gadda, H.4
  • 16
    • 77952992326 scopus 로고    scopus 로고
    • A Bayesian semi-parametric survival model with longitudinal markers
    • Zhang S, Müller P, Do KA. A Bayesian semi-parametric survival model with longitudinal markers. Biometrics. 2010 ; 66 (2). 435-443
    • (2010) Biometrics , vol.66 , Issue.2 , pp. 435-443
    • Zhang, S.1    Müller, P.2    Do, K.A.3
  • 17
    • 48049105068 scopus 로고    scopus 로고
    • Joint modelling of repeated measurements and time-to-event outcomes: The fourth Armitage lecture
    • Diggle PJ, Sousa I, Chetwynd AG. Joint modelling of repeated measurements and time-to-event outcomes: the fourth Armitage lecture. Stat Med. 2008 ; 27 (16). 2981-2998
    • (2008) Stat Med , vol.27 , Issue.16 , pp. 2981-2998
    • Diggle, P.J.1    Sousa, I.2    Chetwynd, A.G.3
  • 18
    • 0020333131 scopus 로고
    • Randomeffects models for longitudinal data
    • Laird NM, Ware JH. Randomeffects models for longitudinal data. Biometrics. 1982 ; 38: 963-974
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 19
    • 0000169232 scopus 로고
    • An algorithm for leastsquares estimation of nonlinear parameters
    • Marquardt D. An algorithm for leastsquares estimation of nonlinear parameters. SIAM J Appl Math. 1963 ; 11: 431-441
    • (1963) SIAM J Appl Math , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 20
    • 0034354410 scopus 로고    scopus 로고
    • Dealing with label switching in mixture models
    • Stephens M. Dealing with label switching in mixture models. J Roy Stat Soc Ser B. 2000 ; 62 (4). 795-809
    • (2000) J Roy Stat Soc ser B , vol.62 , Issue.4 , pp. 795-809
    • Stephens, M.1
  • 21
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • Redner RA, Walker FH. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 1984 ; 26 (2). 195-239
    • (1984) SIAM Rev , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.A.1    Walker, F.H.2
  • 22
    • 33745601740 scopus 로고    scopus 로고
    • Local solutions in the estimation of growth mixture models
    • Hipp JR, Bauer DJ. Local solutions in the estimation of growth mixture models. Psychol Meth. 2006 ; 11: 36-53
    • (2006) Psychol Meth , vol.11 , pp. 36-53
    • Hipp, J.R.1    Bauer, D.J.2
  • 23
    • 0037469122 scopus 로고    scopus 로고
    • Choosing starting values for the em algorithm for getting the highest likelihood in multivariate Gaussian mixture models
    • Biernacki C, Celeux G, Govaert G. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal. 2003 ; 41 (3-4). 561-575
    • (2003) Comput Stat Data Anal , vol.41 , Issue.34 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 24
    • 0035965629 scopus 로고    scopus 로고
    • Determining the number of components in mixtures of linear models
    • Hawkins DS, Allen DM, Stromberg AJ. Determining the number of components in mixtures of linear models. Comput Stat Data Anal. 2001 ; 38 (1). 15-48
    • (2001) Comput Stat Data Anal , vol.38 , Issue.1 , pp. 15-48
    • Hawkins, D.S.1    Allen, D.M.2    Stromberg, A.J.3
  • 25
    • 37349078698 scopus 로고    scopus 로고
    • Parametric latent class joint model for a longitudinal biomarker and recurrent events
    • Han J, Slate EH, Pena EA. Parametric latent class joint model for a longitudinal biomarker and recurrent events. Stat Med. 2007 ; 26 (29). 5285-5302
    • (2007) Stat Med , vol.26 , Issue.29 , pp. 5285-5302
    • Han, J.1    Slate, E.H.2    Pena, E.A.3
  • 26
    • 77955157844 scopus 로고    scopus 로고
    • JM: An R package for the joint modelling of longitudinal and time-to-event data
    • Rizopoulos D. JM: An R package for the joint modelling of longitudinal and time-to-event data. J Stat Softw. 2010 ; 35 (9). 1-33
    • (2010) J Stat Softw , vol.35 , Issue.9 , pp. 1-33
    • Rizopoulos, D.1
  • 27
    • 0347363890 scopus 로고    scopus 로고
    • Diagnostics for joint longitudinal and dropout time modeling
    • Dobson A, Henderson R. Diagnostics for joint longitudinal and dropout time modeling. Biometrics. 2003 ; 59: 741-751
    • (2003) Biometrics , vol.59 , pp. 741-751
    • Dobson, A.1    Henderson, R.2
  • 28
    • 2942677478 scopus 로고    scopus 로고
    • Latent pattern mixture models for informative intermittent missing data in longitudinal studies
    • Lin H, McCulloch CE, Rosenheck RA. Latent pattern mixture models for informative intermittent missing data in longitudinal studies. Biometrics. 2004 ; 60 (2). 295-305
    • (2004) Biometrics , vol.60 , Issue.2 , pp. 295-305
    • Lin, H.1    McCulloch, C.E.2    Rosenheck, R.A.3
  • 29
    • 77949704277 scopus 로고    scopus 로고
    • Score test for conditional independence between longitudinal outcome and time to event given the classes in the joint latent class model
    • Jacqmin-Gadda H, Proust-Lima C, Taylor JMG, Commenges D. Score test for conditional independence between longitudinal outcome and time to event given the classes in the joint latent class model. Biometrics. 2010 ; 66 (1). 11-19
    • (2010) Biometrics , vol.66 , Issue.1 , pp. 11-19
    • Jacqmin-Gadda, H.1    Proust-Lima, C.2    Taylor, J.M.G.3    Commenges, D.4
  • 30
    • 0009852669 scopus 로고    scopus 로고
    • General growth mixture modeling for randomized preventive interventions
    • Muthén B, Brown CH, Masyn K, et al. General growth mixture modeling for randomized preventive interventions. Biostatistics. 2002 ; 3 (4). 459-475
    • (2002) Biostatistics , vol.3 , Issue.4 , pp. 459-475
    • Muthén, B.1    Brown, C.H.2    Masyn, K.3
  • 31
    • 77949750057 scopus 로고    scopus 로고
    • Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes
    • Rizopoulos D, Verbeke G, Molenberghs G. Multiple-imputation-based residuals and diagnostic plots for joint models of longitudinal and survival outcomes. Biometrics. 2010 ; 66 (1). 20-29
    • (2010) Biometrics , vol.66 , Issue.1 , pp. 20-29
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 32
    • 0344097453 scopus 로고    scopus 로고
    • Identification and efficacy of longitudinal markers for survival
    • Henderson R, Diggle P, Dobson A. Identification and efficacy of longitudinal markers for survival. Biostatistics. 2002 ; 3 (1). 33-50
    • (2002) Biostatistics , vol.3 , Issue.1 , pp. 33-50
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 33
    • 79952275759 scopus 로고    scopus 로고
    • Measures of prediction error for survival data with longitudinal covariates
    • Schoop R, Schumacher M, Graf E. Measures of prediction error for survival data with longitudinal covariates. Biometrical J. 2011 ; 53 (2). 275-293
    • (2011) Biometrical J , vol.53 , Issue.2 , pp. 275-293
    • Schoop, R.1    Schumacher, M.2    Graf, E.3
  • 34
    • 84862883959 scopus 로고    scopus 로고
    • Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback-Leibler risks
    • Commenges D, Liquet B, Proust-Lima C. Choice of prognostic estimators in joint models by estimating differences of expected conditional Kullback-Leibler risks. Biometrics. 2012 ;:
    • (2012) Biometrics
    • Commenges, D.1    Liquet, B.2    Proust-Lima, C.3
  • 35
    • 33846223169 scopus 로고    scopus 로고
    • Consistent estimation of the expected brier score in general survival models with right-censored event times
    • Gerds TA, Schumacher M. Consistent estimation of the expected brier score in general survival models with right-censored event times. Biometrical J. 2006 ; 48 (6). 1029-1040
    • (2006) Biometrical J , vol.48 , Issue.6 , pp. 1029-1040
    • Gerds, T.A.1    Schumacher, M.2
  • 36
    • 14844298636 scopus 로고    scopus 로고
    • Explained variation and predictive accuracy in general parametric statistical models: The role of model misspecification
    • Rosthoj S, Keiding N. Explained variation and predictive accuracy in general parametric statistical models: the role of model misspecification. Life-time Data Anal. 2004 ; 10 (4). 461-472
    • (2004) Life-time Data Anal , vol.10 , Issue.4 , pp. 461-472
    • Rosthoj, S.1    Keiding, N.2
  • 37
    • 34547892291 scopus 로고    scopus 로고
    • Efrontype measures of prediction error for survival analysis
    • Gerds TA, Schumacher M. Efrontype measures of prediction error for survival analysis. Biometrics. 2007 ; 63 (4). 1283-1287
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1283-1287
    • Gerds, T.A.1    Schumacher, M.2
  • 38
    • 0042566230 scopus 로고    scopus 로고
    • Evaluation of the Houston biochemical relapse definition in men treated with prolonged neoadjuvant and adjuvant androgen ablation and assessment of followup lead-time bias
    • Pickles T, Kim-Sing C, Morris W, et al. Evaluation of the Houston biochemical relapse definition in men treated with prolonged neoadjuvant and adjuvant androgen ablation and assessment of followup lead-time bias. Int J Radiat Oncol Biol Phys. 2003 ; 57: 1118-1118
    • (2003) Int J Radiat Oncol Biol Phys , vol.57 , pp. 1118-1118
    • Pickles, T.1    Kim-Sing, C.2    Morris, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.