메뉴 건너뛰기




Volumn 1, Issue , 2015, Pages 446-453

A multivariate timeseries modeling approach to severity of illness assessment and forecasting in ICU with sparse, heterogeneous clinical data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BLOOD PRESSURE; BRAIN; DISEASES; FORECASTING;

EID: 84959548610     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (168)

References (33)
  • 1
    • 0141607824 scopus 로고    scopus 로고
    • Latent dirichlet allocation
    • Blei, D.; Ng, A.; and Jordan, M. 2003. Latent dirichlet allocation. JMLR 3(5):993-1022.
    • (2003) JMLR , vol.3 , Issue.5 , pp. 993-1022
    • Blei, D.1    Ng, A.2    Jordan, M.3
  • 3
    • 84855441940 scopus 로고    scopus 로고
    • Severity scoring in the critically ill: Part 1 interpretation and accuracy of outcome prediction scoring systems
    • Breslow, M. J., and Badawi, O. 2012. Severity scoring in the critically ill: Part 1 interpretation and accuracy of outcome prediction scoring systems. CHEST Journal 141(1 ):245-252.
    • (2012) CHEST Journal , vol.141 , Issue.1 , pp. 245-252
    • Breslow, M.J.1    Badawi, O.2
  • 9
    • 84861950416 scopus 로고    scopus 로고
    • Artifact removal for intracranial pressure monitoring signals: A robust solution with signal decomposition
    • American Medical Informatics Association
    • Feng, M.; Loy, L.; Zhang, F.; and Guan, C. 2011. Artifact removal for intracranial pressure monitoring signals: a robust solution with signal decomposition. In Conf Proc IEEE Eng Med Biol Soc, 797-801. American Medical Informatics Association.
    • (2011) Conf Proc. IEEE Eng Med Biol Soc , pp. 797-801
    • Feng, M.1    Loy, L.2    Zhang, F.3    Guan, C.4
  • 12
    • 1842788824 scopus 로고    scopus 로고
    • Finding scientific topics
    • Griffiths, T., and Steyvers, M. 2004. Finding scientific topics. In PNAS, volume 101, 5228-5235.
    • (2004) PNAS , vol.101 , pp. 5228-5235
    • Griffiths, T.1    Steyvers, M.2
  • 13
    • 27644569822 scopus 로고    scopus 로고
    • Intracranial pressure response to induced hypertension: Role of dynamic pressure autoregulation
    • Hlatky, R.; Valadka, A. B.; and Robertson, C. S. 2005. Intracranial pressure response to induced hypertension: role of dynamic pressure autoregulation. Neurosurgery 57(5):917-923.
    • (2005) Neurosurgery , vol.57 , Issue.5 , pp. 917-923
    • Hlatky, R.1    Valadka, A.B.2    Robertson, C.S.3
  • 14
    • 79953799606 scopus 로고    scopus 로고
    • Icu acuity: Real-time models versus daily models
    • American Medical Informatics Association
    • Hug, C. W., and Szolovits, P. 2009. Icu acuity: real-time models versus daily models. In AMIA Annual Symposium Proceedings, volume 2009, 260. American Medical Informatics Association.
    • (2009) AMIA Annual Symposium Proceedings, 2009 , pp. 260
    • Hug, C.W.1    Szolovits, P.2
  • 15
    • 84880838139 scopus 로고    scopus 로고
    • Prognostic physiology: Modeling patient severity in intensive care units using radial domain folding
    • American Medical Informatics Association.
    • Joshi, R, and Szolovits, P. 2012. Prognostic physiology: Modeling patient severity in intensive care units using radial domain folding. In AMIA Annual Symposium Proceedings, volume 2012, 1276. American Medical Informatics Association.
    • (2012) AMIA Annual Symposium Proceedings , vol.2012 , pp. 1276
    • Joshi, R.1    Szolovits, P.2
  • 16
    • 84879468407 scopus 로고    scopus 로고
    • Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
    • Lasko, T. A.; Denny, J. C; and Levy, M. A. 2013. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS one 8(6):e6634l.
    • (2013) PloS One , vol.8 , Issue.6 , pp. e6634l
    • Lasko, T.A.1    Denny, J.C.2    Levy, M.A.3
  • 18
    • 84880830110 scopus 로고    scopus 로고
    • Risk stratification of icu patients using topic models inferred from unstructured progress notes
    • American Medical Informatics Association
    • Lehman, L.-w.; Saeed, M.; Long, W.; Lee, J.; and Mark, R. 2012. Risk stratification of icu patients using topic models inferred from unstructured progress notes. In AMIA Annual Symposium Proceedings, volume 2012, 505. American Medical Informatics Association.
    • (2012) AMIA Annual Symposium Proceedings , vol.2012 , pp. 505
    • Lehman, L.-W.1    Saeed, M.2    Long, W.3    Lee, J.4    Mark, R.5
  • 19
    • 84866315935 scopus 로고    scopus 로고
    • Dynamic time warping and machine learning for signal quality assessment of pulsatile signals
    • Li, Q., and Clifford, G. 2012. Dynamic time warping and machine learning for signal quality assessment of pulsatile signals. Physiological Measurement 33(9): 1491.
    • (2012) Physiological Measurement , vol.33 , Issue.9 , pp. 1491
    • Li, Q.1    Clifford, G.2
  • 20
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing sax: A novel symbolic representation of time series
    • Lin, J.; Keogh, E.; Wei, L.; and Lonardi, S. 2007. Experiencing sax: a novel symbolic representation of time series. Data Mining and Knowledge Discovery 15(2): 107-144.
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 23
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • Quionero-Candela, J., and Rasmussen, C. E. 2005. A unifying view of sparse approximate gaussian process regression. J. Mach. Learn. Res. 6:19391959.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 19391959
    • Quionero-Candela, J.1    Rasmussen, C.E.2
  • 25
    • 34748849213 scopus 로고    scopus 로고
    • A novel method for the efficient retrieval of similar multiparameter physiologic time series using wavelet-based symbolic representations
    • American Medical Informatics Association
    • Saeed, M., and Mark, R. 2006. A novel method for the efficient retrieval of similar multiparameter physiologic time series using wavelet-based symbolic representations. In AMIA Annual Symposium Proceedings, volume 2006,679. American Medical Informatics Association.
    • (2006) AMIA Annual Symposium Proceedings , vol.2006 , pp. 679
    • Saeed, M.1    Mark, R.2
  • 30
    • 79955869962 scopus 로고    scopus 로고
    • Unsupervised similarity-based risk stratification for cardiovascular events using long-term time-series data
    • Syed, Z., and Guttag, J. V. 2011. Unsupervised similarity-based risk stratification for cardiovascular events using long-term time-series data. Journal of Machine Learning Research 12:999-1024.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 999-1024
    • Syed, Z.1    Guttag, J.V.2
  • 31
    • 84883586438 scopus 로고    scopus 로고
    • Critical care-where have we been and where are we going?
    • Vincent, J.-L. 2013. Critical care-where have we been and where are we going? Critical Care 17(Suppl 1):S2.
    • (2013) Critical Care , vol.17 , pp. S2
    • Vincent, J.-L.1
  • 33
    • 34447527791 scopus 로고    scopus 로고
    • Pathophysiology of traumatic brain injury
    • Werner, C, and Engelhard, K. 2007. Pathophysiology of traumatic brain injury. Br. J. Anaesth 99(1):4-9.
    • (2007) Br. J. Anaesth , vol.99 , Issue.1 , pp. 4-9
    • Werner, C.1    Engelhard, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.