메뉴 건너뛰기




Volumn 51, Issue 9, 2013, Pages 4800-4815

Semisupervised discriminative locally enhanced alignment for hyperspectral image classification

Author keywords

Dimension reduction (DR); multilevel segmentation; semisupervised learning

Indexed keywords

ACCURATE MEASUREMENT; DIMENSION REDUCTION; DIMENSIONALITY REDUCTION METHOD; HYPERSPECTRAL IMAGE CLASSIFICATION; HYPERSPECTRAL IMAGE DATAS; MULTILEVEL SEGMENTATION; SEMI- SUPERVISED LEARNING; SEMI-SUPERVISED METHOD;

EID: 84883748507     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2012.2230445     Document Type: Article
Times cited : (69)

References (46)
  • 2
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Apr
    • P. Comon, "Independent component analysis, a new concept?" Signal Process., vol. 36, no. 3, pp. 287-314, Apr. 1994.
    • (1994) Signal Process. , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 4
    • 2642530204 scopus 로고    scopus 로고
    • Nonparametric weighted feature extraction for classification
    • May
    • B. C. Kuo and D. A. Landgrebe, "Nonparametric weighted feature extraction for classification," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 5, pp. 1096-1105, May 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.5 , pp. 1096-1105
    • Kuo, B.C.1    Landgrebe, D.A.2
  • 5
    • 35348882054 scopus 로고    scopus 로고
    • Modified Fisher's linear discriminant analysis for hyperspectral imagery
    • DOI 10.1109/LGRS.2007.900751
    • Q. Du, "Modified Fisher's linear discriminant analysis for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 503-507, Oct. 2007. (Pubitemid 47588019)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.4 , pp. 503-507
    • Du, Q.1
  • 6
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar
    • T. V. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.V.1    Bruzzone, L.2    Camps-Valls, G.3
  • 7
    • 77958582596 scopus 로고    scopus 로고
    • A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data
    • Mar
    • J.-M. Yang, P.-T. Yu, and B.-C. Kuo, "A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 3, pp. 1279-1293, Mar. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.3 , pp. 1279-1293
    • Yang, J.-M.1    Yu, P.-T.2    Kuo, B.-C.3
  • 8
    • 78049282379 scopus 로고    scopus 로고
    • Double nearest proportion feature extraction for hyperspectral-image classification
    • Nov
    • H. Y. Huang and B. C. Kuo, "Double nearest proportion feature extraction for hyperspectral-image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4034-4046, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4034-4046
    • Huang, H.Y.1    Kuo, B.C.2
  • 10
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections (LPP)
    • Vancouver, BC, Canada: MIT Press
    • X. He and P. Niyogi, "Locality preserving projections (LPP)," in Advances in Neural Information Processing Systems, vol. 103. Vancouver, BC, Canada: MIT Press, 2004.
    • (2004) Advances in Neural Information Processing Systems , vol.103
    • He, X.1    Niyogi, P.2
  • 11
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • M. Sugiyama, "Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis," J. Mach. Learn. Res., vol. 8, pp. 1027-1061, May 2007. (Pubitemid 46798409)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 13
    • 68549120964 scopus 로고    scopus 로고
    • Patch alignment for dimensionality reduction
    • Sep
    • T. Zhang, D. Tao, X. Li, and J. Yang, "Patch alignment for dimensionality reduction," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1299-1313, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1299-1313
    • Zhang, T.1    Tao, D.2    Li, X.3    Yang, J.4
  • 15
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Oct
    • G. Camps-Valls, T. Bandos Marsheva, and D. Zhou, "Semi-supervised graph-based hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos Marsheva, T.2    Zhou, D.3
  • 16
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semisupervised dimensionality reduction
    • Sep
    • Y. Song, F. Nie, C. Zhang, and S. Xiang, "A unified framework for semisupervised dimensionality reduction," Pattern Recogn., vol. 41, no. 9, pp. 2789-2799, Sep. 2008.
    • (2008) Pattern Recogn. , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 17
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Nov
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 19
    • 79952022416 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification
    • Mar
    • S. Chen and D. Zhang, "Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 369-373, Mar. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.2 , pp. 369-373
    • Chen, S.1    Zhang, D.2
  • 22
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, Dec. 2006. (Pubitemid 44708005)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 24
    • 56749103988 scopus 로고    scopus 로고
    • A graph based subspace semisupervised learning framework for dimensionality reduction
    • W. Yang, S. Zhang, and W. Liang, "A graph based subspace semisupervised learning framework for dimensionality reduction," in Proc. Eur. Conf. Comput. Vis., 2008, pp. 664-677.
    • (2008) Proc. Eur. Conf. Comput. Vis. , pp. 664-677
    • Yang, W.1    Zhang, S.2    Liang, W.3
  • 25
    • 0005004572 scopus 로고    scopus 로고
    • The value of unlabeled data for classification problems
    • T. Zhang, "The value of unlabeled data for classification problems," in Proc. 17th Int. Conf. Mach. Learn., 2002, pp. 1191-1198.
    • (2002) Proc. 17th Int. Conf. Mach. Learn. , pp. 1191-1198
    • Zhang, T.1
  • 26
    • 84863338319 scopus 로고    scopus 로고
    • Unlabeled data: Now it helps, now it doesn't
    • A. Singh, R. Nowak, and X. Zhu, "Unlabeled data: Now it helps, now it doesn't," in Proc. Adv. Neural Inf., 2008, vol. 21, pp. 1513-1520.
    • (2008) Proc. Adv. Neural Inf. , vol.21 , pp. 1513-1520
    • Singh, A.1    Nowak, R.2    Zhu, X.3
  • 28
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • Sep
    • P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, Sep. 2004.
    • (2004) Int. J. Comput. Vis. , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 29
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 30
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Proc. Adv. Neural Inf., 2002, vol. 1, pp. 585-592.
    • (2002) Proc. Adv. Neural Inf. , vol.1 , pp. 585-592
    • Belkin, M.1    Niyogi, P.2
  • 31
    • 84867920399 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Z. Zhang and H. Zha, "Principal manifolds and nonlinear dimensionality reduction via tangent space alignment," J. Shanghai Univ. (English Edition), vol. 8, no. 4, pp. 406-424, Dec. 2004. (Pubitemid 40166014)
    • (2004) Journal of Shanghai University , vol.8 , Issue.4 , pp. 406-424
    • Zhang, Z.-Y.1    Zha, H.-Y.2
  • 32
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualization of high dimensional data
    • N. D. Lawrence, "Gaussian process latent variable models for visualization of high dimensional data," in Proc. Adv. Neural Inf., 2004, vol. 16, pp. 329-336.
    • (2004) Proc. Adv. Neural Inf. , vol.16 , pp. 329-336
    • Lawrence, N.D.1
  • 33
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • S. Chopra, R. Hadsell, and Y. LeCun, "Learning a similarity metric discriminatively, with application to face verification," in Proc. IEEE Comput. Vis. Pattern Recognit., 2005, vol. 1, pp. 539-546.
    • (2005) Proc. IEEE Comput. Vis. Pattern Recognit. , vol.1 , pp. 539-546
    • Chopra, S.1    Hadsell, R.2    Lecun, Y.3
  • 34
    • 65449163521 scopus 로고    scopus 로고
    • Structured metric learning for high dimensional problems
    • J. V. Davis and I. S. Dhillon, "Structured metric learning for high dimensional problems," in Proc. 14th ACM SIGKDD, 2008, pp. 195-203.
    • (2008) Proc. 14th ACM SIGKDD , pp. 195-203
    • Davis, J.V.1    Dhillon, I.S.2
  • 35
    • 50649117726 scopus 로고    scopus 로고
    • Learning globally-consistent local distance functions for shape-based image retrieval and classification
    • A. Frome, Y. Singer, F. Sha, and J. Malik, "Learning globally-consistent local distance functions for shape-based image retrieval and classification," in Proc. IEEE 11th Int. Conf. Comput. Vis., 2007, pp. 1-8.
    • (2007) Proc. IEEE 11th Int. Conf. Comput. Vis. , pp. 1-8
    • Frome, A.1    Singer, Y.2    Sha, F.3    Malik, J.4
  • 39
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Mar
    • L. Zhang, L. Zhang, D. Tao, and X. Huang, "On combining multiple features for hyperspectral remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 879-893, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 40
    • 77952585265 scopus 로고    scopus 로고
    • Hybrid detectors based on selective endmembers
    • Jun
    • L. Zhang, B. Du, and Y. Zhong, "Hybrid detectors based on selective endmembers," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2633-2646, Jun. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.6 , pp. 2633-2646
    • Zhang, L.1    Du, B.2    Zhong, Y.3
  • 41
    • 84855414287 scopus 로고    scopus 로고
    • An effective graph-based hierarchy image segmentation
    • W. Cu and Y. Zhang, "An effective graph-based hierarchy image segmentation," Intell. Autom. Soft Comput., vol. 17, no. 7, pp. 969-981, 2011.
    • (2011) Intell. Autom. Soft Comput. , vol.17 , Issue.7 , pp. 969-981
    • Cu, W.1    Zhang, Y.2
  • 42
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • DOI 10.1109/36.975001, PII S0196289201108776
    • Q. Jackson and D. Landgrebe, "An adaptive classifier design for highdimensional data analysis with a limited training data set," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2664-2679, Dec. 2001. (Pubitemid 34091845)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.A.2
  • 44
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis
    • DOI 10.1109/79.974718
    • D. Landgrebe, "Hyperspectral image data analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002. (Pubitemid 34237205)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 45
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • N. Kambhatla and T. K. Leen, "Dimension reduction by local principal component analysis," Neural Comput., vol. 9, no. 7, pp. 1493-1516, Oct. 1997. (Pubitemid 127462802)
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.K.2
  • 46
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Dec.
    • L. K. Saul and S. T. Roweis, "Think globally, fit locally: Unsupervised learning of low dimensional manifolds," J. Mach. Learn. Res., vol. 4, pp. 119-155, Dec. 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.