-
1
-
-
0042378381
-
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
-
M.Belkin,, and P.Niyogi. 2003. “Laplacian Eigenmaps for Dimensionality Reduction and Data Representation.” Neural Computation 15: 1373–1396. doi:10.1162/089976603321780317.
-
(2003)
Neural Computation
, vol.15
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
80455122805
-
Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery
-
A.Castrodad,, Z.M.Xing, J.B.Greer, E.Bosch, L.Carin, and G.Sapiro. 2011. “Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery.” IEEE Transactions on Geoscience and Remote Sensing 49: 4263–4281. doi:10.1109/TGRS.2011.2163822.
-
(2011)
IEEE Transactions on Geoscience and Remote Sensing
, vol.49
, pp. 4263-4281
-
-
Castrodad, A.1
Xing, Z.M.2
Greer, J.B.3
Bosch, E.4
Carin, L.5
Sapiro, G.6
-
5
-
-
80053571096
-
Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
-
Y.Chen,, N.Nasrabadi, and T.Tran. 2011. “Hyperspectral Image Classification Using Dictionary-Based Sparse Representation.” IEEE Transactions on Geoscience and Remote Sensing 49: 3973–3985. doi:10.1109/TGRS.2011.2129595.
-
(2011)
IEEE Transactions on Geoscience and Remote Sensing
, vol.49
, pp. 3973-3985
-
-
Chen, Y.1
Nasrabadi, N.2
Tran, T.3
-
8
-
-
84863976875
-
A Discriminative Manifold Learning Based Dimension Reduction Method for Hyperspectral Classification
-
B.Du,, L.P.Zhang, L.F.Zhang, T.Chen, and K.Wu. 2012. “A Discriminative Manifold Learning Based Dimension Reduction Method for Hyperspectral Classification.” International Journal of Fuzzy Systems 14: 272–277.
-
(2012)
International Journal of Fuzzy Systems
, vol.14
, pp. 272-277
-
-
Du, B.1
Zhang, L.P.2
Zhang, L.F.3
Chen, T.4
Wu, K.5
-
10
-
-
84863418938
-
Discriminant Sparse Neighborhood Preserving Embedding for Face Recognition
-
J.Gui,, Z.N.Sun, W.Jia, R.X.Hu, Y.K.Lei, and S.W.Ji. 2012. “Discriminant Sparse Neighborhood Preserving Embedding for Face Recognition.” Pattern Recognition 45: 2884–2893. doi:10.1016/j.patcog.2012.02.005.
-
(2012)
Pattern Recognition
, vol.45
, pp. 2884-2893
-
-
Gui, J.1
Sun, Z.N.2
Jia, W.3
Hu, R.X.4
Lei, Y.K.5
Ji, S.W.6
-
11
-
-
84861338885
-
A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using A Few Labeled Samples
-
Q.Haq,, L.Tao, F.Sun, and S.Yang. 2012. “A Fast and Robust Sparse Approach for Hyperspectral Data Classification Using A Few Labeled Samples.” IEEE Transactions on Geoscience and Remote Sensing 50: 2287–2302. doi:10.1109/TGRS.2011.2172617.
-
(2012)
IEEE Transactions on Geoscience and Remote Sensing
, vol.50
, pp. 2287-2302
-
-
Haq, Q.1
Tao, L.2
Sun, F.3
Yang, S.4
-
12
-
-
33745881038
-
Neighborhood Preserving Embedding
-
Beijng, October, IEEE Computer Society
-
X.F.He,, D.Cai, S.C.Yan, and H.J.Zhang. 2005. “Neighborhood Preserving Embedding.” Proceedings of the 10th International Conference on Computer Vision, Beijng. October 17–21, 1208–1213. IEEE Computer Society.
-
(2005)
Proceedings of the 10th International Conference on Computer Vision
, pp. 1208-1213
-
-
He, X.F.1
Cai, D.2
Yan, S.C.3
Zhang, H.J.4
-
13
-
-
15044358511
-
Face Recognition Using Laplacian Faces
-
X.F.He,, S.C.Yan, Y.Hu, P.Niyogi, and H.-J.Zhang. 2005. “Face Recognition Using Laplacian Faces.” IEEE Transactions on Pattern Analysis and Machine Intelligence 27: 328–340. doi:10.1109/TPAMI.2005.55.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 328-340
-
-
He, X.F.1
Yan, S.C.2
Hu, Y.3
Niyogi, P.4
Zhang, H.-J.5
-
14
-
-
82055188364
-
A New Fast Algorithm for Multiclass Hyperspectral Image Classification with SVM
-
S.A.Hosseini,, and H.Ghassemian. 2011. “A New Fast Algorithm for Multiclass Hyperspectral Image Classification with SVM.” International Journal of Remote Sensing 32: 8657–8683. doi:10.1080/01431161.2010.547882.
-
(2011)
International Journal of Remote Sensing
, vol.32
, pp. 8657-8683
-
-
Hosseini, S.A.1
Ghassemian, H.2
-
15
-
-
84890731484
-
Classification of Hyperspectral Remote-Sensing Images Based on Sparse Manifold Learning
-
H.Huang, 2013. “Classification of Hyperspectral Remote-Sensing Images Based on Sparse Manifold Learning.” Journal of Applied Remote Sensing 7: 073464. doi:10.1117/1.JRS.7.073464.
-
(2013)
Journal of Applied Remote Sensing
, vol.7
, pp. 073464
-
-
Huang, H.1
-
16
-
-
84897966232
-
Improved Discriminant Sparsity Neighborhood Preserving Embedding for Hyperspectral Image Classification
-
H.Huang,, and Y.B.Huang. 2014. “Improved Discriminant Sparsity Neighborhood Preserving Embedding for Hyperspectral Image Classification.” Neurocomputing 136: 224–234. doi:10.1016/j.neucom.2014.01.010.
-
(2014)
Neurocomputing
, vol.136
, pp. 224-234
-
-
Huang, H.1
Huang, Y.B.2
-
17
-
-
84896401103
-
Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation with a Locally Adaptive Dictionary
-
J.Li,, H.Zhang, Y.Huang, and L.Zhang. 2014. “Hyperspectral Image Classification by Nonlocal Joint Collaborative Representation with a Locally Adaptive Dictionary.” IEEE Transactions on Geoscience and Remote Sensing 52: 3707–3719. doi:10.1109/TGRS.2013.2274875.
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, pp. 3707-3719
-
-
Li, J.1
Zhang, H.2
Huang, Y.3
Zhang, L.4
-
18
-
-
84897904538
-
Hyperspectral Image Classification Using Kernel Sparse Representation and Semilocal Spatial Graph Regularization
-
J.Liu,, Z.Wu, L.Sun, Z.Wei, and L.Xiao. 2014. “Hyperspectral Image Classification Using Kernel Sparse Representation and Semilocal Spatial Graph Regularization.” IEEE Geoscience and Remote Sensing Letters 11: 1320–1324. doi:10.1109/LGRS.2013.2292831.
-
(2014)
IEEE Geoscience and Remote Sensing Letters
, vol.11
, pp. 1320-1324
-
-
Liu, J.1
Wu, Z.2
Sun, L.3
Wei, Z.4
Xiao, L.5
-
19
-
-
84896390467
-
Sparse Graph-Based Discriminant Analysis for Hyperspectral Imagery
-
N.H.Ly,, Q.Du, and J.E.Fowler. 2014. “Sparse Graph-Based Discriminant Analysis for Hyperspectral Imagery.” IEEE Transactions on Geoscience and Remote Sensing 52: 3872–3884. doi:10.1109/TGRS.2013.2277251.
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, pp. 3872-3884
-
-
Ly, N.H.1
Du, Q.2
Fowler, J.E.3
-
20
-
-
69049112203
-
Sparsity Preserving Projections with Applications to Face Recognition
-
L.S.Qiao,, S.C.Chen, and X.Y.Tan. 2010. “Sparsity Preserving Projections with Applications to Face Recognition.” Pattern Recognition 43: 331–341. doi:10.1016/j.patcog.2009.05.005.
-
(2010)
Pattern Recognition
, vol.43
, pp. 331-341
-
-
Qiao, L.S.1
Chen, S.C.2
Tan, X.Y.3
-
21
-
-
0034704222
-
Nonlinear Dimensionality Reduction by Locally Linear Embedding
-
S.T.Roweis,, and L.K.Saul. 2000. “Nonlinear Dimensionality Reduction by Locally Linear Embedding.” Science 290: 2323–2326. doi:10.1126/science.290.5500.2323.
-
(2000)
Science
, vol.290
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
22
-
-
84904467508
-
Sparse Dimensionality Reduction of Hyperspectral Image Based on Semi-Supervised Local Fisher Discriminant Analysis
-
Z.Shao,, and L.Zhang. 2014. “Sparse Dimensionality Reduction of Hyperspectral Image Based on Semi-Supervised Local Fisher Discriminant Analysis.” International Journal of Applied Earth Observation and Geoinformation 31: 122–129. doi:10.1016/j.jag.2014.03.015.
-
(2014)
International Journal of Applied Earth Observation and Geoinformation
, vol.31
, pp. 122-129
-
-
Shao, Z.1
Zhang, L.2
-
23
-
-
84883748507
-
Semisupervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification
-
Q.Shi,, L.P.Zhang, and B.Du. 2013. “Semisupervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 51: 4800–4815. doi:10.1109/TGRS.2012.2230445.
-
(2013)
IEEE Transactions on Geoscience and Remote Sensing
, vol.51
, pp. 4800-4815
-
-
Shi, Q.1
Zhang, L.P.2
Du, B.3
-
24
-
-
84870541423
-
Exploiting Sparsity in Hyperspectral Image Classification via Graphical Models
-
U.Srinivas,, Y.Chen, V.Monga, N.M.Nasrabadi, and T.D.Tran. 2012. “Exploiting Sparsity in Hyperspectral Image Classification via Graphical Models.” Geoscience and Remote Sensing Letters, IEEE 10: 505–509. doi:10.1109/LGRS.2012.2211858.
-
(2012)
Geoscience and Remote Sensing Letters, IEEE
, vol.10
, pp. 505-509
-
-
Srinivas, U.1
Chen, Y.2
Monga, V.3
Nasrabadi, N.M.4
Tran, T.D.5
-
25
-
-
34249086815
-
Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis
-
M.Sugiyama, 2007. “Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis.” Journal of Machine Learning Research 8: 1027–1061.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1027-1061
-
-
Sugiyama, M.1
-
26
-
-
84893068247
-
UL-Isomap Based Nonlinear Dimensionality Reduction for Hyperspectral Imagery Classification
-
W.Sun,, A.Halevy, J.J.Benedetto, W.Czaja, C.Chun Liu, H.B.Wu, B.Q.Shi, and W.Y.Li. 2014. “UL-Isomap Based Nonlinear Dimensionality Reduction for Hyperspectral Imagery Classification.” ISPRSJournal of Photogrammetry and Remote Sensing 89: 25–36. doi:10.1016/j.isprsjprs.2013.12.003.
-
(2014)
ISPRSJournal of Photogrammetry and Remote Sensing
, vol.89
, pp. 25-36
-
-
Sun, W.1
Halevy, A.2
Benedetto, J.J.3
Czaja, W.4
Chun Liu, C.5
Wu, H.B.6
Shi, B.Q.7
Li, W.Y.8
-
27
-
-
84903270810
-
Manifold-Based Sparse Representation for Hyperspectral Image Classification
-
Y.Tang,, H.Yuan, and L.Li. 2014. “Manifold-Based Sparse Representation for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 52: 7606–7618. doi:10.1109/TGRS.2014.2315209.
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, pp. 7606-7618
-
-
Tang, Y.1
Yuan, H.2
Li, L.3
-
28
-
-
0034704229
-
A Global Geometric Framework for Nonlinear Dimensionality Reduction
-
J.B.Tenenbaum,, V.D.Silva, and J.C.Langford. 2000. “A Global Geometric Framework for Nonlinear Dimensionality Reduction.” Science 290: 2319–2323. doi:10.1126/science.290.5500.2319.
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
Silva, V.D.2
Langford, J.C.3
-
29
-
-
33947194180
-
Graph Embedding and Extensions: A General Framework for Dimensionality Reduction
-
S.C.Yan,, D.Xu, B.Y.Zhang, H.-J.Zhang, Q.Yang, and S.Lin. 2007. “Graph Embedding and Extensions: A General Framework for Dimensionality Reduction.” IEEE Transactions on Pattern Analysis and Machine Intelligence 29: 40–51. doi:10.1109/TPAMI.2007.250598.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, pp. 40-51
-
-
Yan, S.C.1
Xu, D.2
Zhang, B.Y.3
Zhang, H.-J.4
Yang, Q.5
Lin, S.6
-
30
-
-
79956086461
-
Discriminative Learning by Sparse Representation for Classification
-
F.Zang,, and J.S.ZhangJ. Sh. 2011. “Discriminative Learning by Sparse Representation for Classification.” Neurocomputing 74: 2176–2183. doi:10.1016/j.neucom.2011.02.012.
-
(2011)
Neurocomputing
, vol.74
, pp. 2176-2183
-
-
Zang, F.1
Zhang, J.S.2
-
31
-
-
84891011267
-
Sparse Transfer Manifold Embedding for Hyperspectral Target Detection
-
L.Zhang,, L.Zhang, D.Tao, and X.Huang. 2014. “Sparse Transfer Manifold Embedding for Hyperspectral Target Detection.” IEEE Transactions on Geoscience and Remote Sensing 52: 1030–1043. doi:10.1109/TGRS.2013.2246837.
-
(2014)
IEEE Transactions on Geoscience and Remote Sensing
, vol.52
, pp. 1030-1043
-
-
Zhang, L.1
Zhang, L.2
Tao, D.3
Huang, X.4
-
32
-
-
84889603215
-
Improved Sparse Representation Using Adaptive Spatial Support for Effective Target Detection in Hyperspectral Imagery
-
C.H.Zhao,, X.H.Li, J.C.Ren, and S.Marshallb. 2013. “Improved Sparse Representation Using Adaptive Spatial Support for Effective Target Detection in Hyperspectral Imagery.” International Journal of Remote Sensing 34: 8669–8684. doi:10.1080/01431161.2013.845924.
-
(2013)
International Journal of Remote Sensing
, vol.34
, pp. 8669-8684
-
-
Zhao, C.H.1
Li, X.H.2
Ren, J.C.3
Marshallb, S.4
|