메뉴 건너뛰기




Volumn 72, Issue 7-9, 2009, Pages 1431-1443

Quality assessment of dimensionality reduction: Rank-based criteria

Author keywords

Co ranking matrix; Dimensionality reduction; Embedding; Intrusion and extrusion fractions; Quality assessment; Trustworthiness and continuity

Indexed keywords

CO-RANKING MATRIX; DIMENSIONALITY REDUCTION; EMBEDDING; INTRUSION AND EXTRUSION FRACTIONS; QUALITY ASSESSMENT; TRUSTWORTHINESS AND CONTINUITY;

EID: 61849137245     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2008.12.017     Document Type: Article
Times cited : (283)

References (44)
  • 1
    • 0026898892 scopus 로고
    • Quantifying the neighborhood preservation of self-organizing maps
    • Bauer H.-U., and Pawelzik K. Quantifying the neighborhood preservation of self-organizing maps. IEEE Transactions on Neural Networks 3 (1992) 570-579
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 570-579
    • Bauer, H.-U.1    Pawelzik, K.2
  • 2
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Dietterich T., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA
    • Belkin M., and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich T., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems (NIPS 2001) vol. 14 (2002), MIT Press, Cambridge, MA
    • (2002) Advances in Neural Information Processing Systems (NIPS 2001) , vol.14
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15 6 (2003) 1373-1396
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 9444224602 scopus 로고    scopus 로고
    • Spectral clustering and kernel PCA are learning eigenfunctions
    • Technical Report 1239, Département d'Informatique et Recherche Opérationnelle, Université de Montréal, Montréal, July
    • Y. Bengio, P. Vincent, J.-F. Paiement, O. Delalleau, M. Ouimet, N. Le Roux, Spectral clustering and kernel PCA are learning eigenfunctions, Technical Report 1239, Département d'Informatique et Recherche Opérationnelle, Université de Montréal, Montréal, July 2003.
    • (2003)
    • Bengio, Y.1    Vincent, P.2    Paiement, J.-F.3    Delalleau, O.4    Ouimet, M.5    Le Roux, N.6
  • 5
    • 61849119166 scopus 로고    scopus 로고
    • M. Brand, K. Huang, A unifying theorem for spectral embedding and clustering, in: C. Bishop, B. Frey (Eds.), Proceedings of International Workshop on Artificial Intelligence and Statistics (AISTATS'03), Key West, FL, 2003, also presented at NIPS 2002 Workshop on Spectral Methods, Available as Technical Report TR2002-042.
    • M. Brand, K. Huang, A unifying theorem for spectral embedding and clustering, in: C. Bishop, B. Frey (Eds.), Proceedings of International Workshop on Artificial Intelligence and Statistics (AISTATS'03), Key West, FL, 2003, also presented at NIPS 2002 Workshop on Spectral Methods, Available as Technical Report TR2002-042.
  • 7
    • 84980028038 scopus 로고
    • Vector quantization and projection neural network
    • Springer, New York
    • P. Demartines, J. Hérault, Vector quantization and projection neural network, in: Lecture Notes in Computer Science, vol. 686, Springer, New York, 1993, pp. 328-333.
    • (1993) Lecture Notes in Computer Science , vol.686 , pp. 328-333
    • Demartines, P.1    Hérault, J.2
  • 8
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets
    • Demartines P., and Hérault J. Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks 8 1 (1997) 148-154
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Hérault, J.2
  • 12
    • 1542535868 scopus 로고    scopus 로고
    • Curvilinear component analysis for high dimensional data representation: I. Theoretical aspects and practical use in the presence of noise
    • Mira J., and Sánchez J. (Eds), Springer, Alicante, Spain
    • Hérault J., Jaussions-Picaud C., and Guérin-Dugué A. Curvilinear component analysis for high dimensional data representation: I. Theoretical aspects and practical use in the presence of noise. In: Mira J., and Sánchez J. (Eds). Proceedings of IWANN'99 vol. II (1999), Springer, Alicante, Spain 635-644
    • (1999) Proceedings of IWANN'99 , vol.II , pp. 635-644
    • Hérault, J.1    Jaussions-Picaud, C.2    Guérin-Dugué, A.3
  • 14
    • 0020068152 scopus 로고
    • Self-organization of topologically correct feature maps
    • Kohonen T. Self-organization of topologically correct feature maps. Biological Cybernetics 43 (1982) 59-69
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 16
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37 2 (1991) 233-243
    • (1991) AIChE Journal , vol.37 , Issue.2 , pp. 233-243
    • Kramer, M.1
  • 17
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • Kruskal J. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29 (1964) 1-28
    • (1964) Psychometrika , vol.29 , pp. 1-28
    • Kruskal, J.1
  • 20
    • 1542680971 scopus 로고    scopus 로고
    • Curvilinear distance analysis versus isomap
    • Lee J., and Verleysen M. Curvilinear distance analysis versus isomap. Neurocomputing 57 (2004) 49-76
    • (2004) Neurocomputing , vol.57 , pp. 49-76
    • Lee, J.1    Verleysen, M.2
  • 21
    • 21744433228 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction of data manifolds with essential loops
    • Lee J., and Verleysen M. Nonlinear dimensionality reduction of data manifolds with essential loops. Neurocomputing 67 (2005) 29-53
    • (2005) Neurocomputing , vol.67 , pp. 29-53
    • Lee, J.1    Verleysen, M.2
  • 24
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • Mao J., and Jain A. Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 6 2 (1995) 296-317
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.2 , pp. 296-317
    • Mao, J.1    Jain, A.2
  • 25
    • 84864071145 scopus 로고    scopus 로고
    • Diffusion maps, spectral clustering and eigenfunction of Fokker-Planck operators
    • Weiss Y., Schölkopf B., and Platt J. (Eds), MIT Press, Cambridge, MA
    • Nadler B., Lafon S., Coifman R., and Kevrekidis I. Diffusion maps, spectral clustering and eigenfunction of Fokker-Planck operators. In: Weiss Y., Schölkopf B., and Platt J. (Eds). Advances in Neural Information Processing Systems (NIPS 2005) vol. 18 (2006), MIT Press, Cambridge, MA
    • (2006) Advances in Neural Information Processing Systems (NIPS 2005) , vol.18
    • Nadler, B.1    Lafon, S.2    Coifman, R.3    Kevrekidis, I.4
  • 26
    • 0000621817 scopus 로고
    • Data compression, feature extraction, and autoassociation in feedforward neural networks
    • Kohonen T., Mäkisara K., Simula O., and Kangas J. (Eds), Elsevier Science Publishers, B.V., North-Holland
    • Oja E. Data compression, feature extraction, and autoassociation in feedforward neural networks. In: Kohonen T., Mäkisara K., Simula O., and Kangas J. (Eds). Artificial Neural Networks vol. 1 (1991), Elsevier Science Publishers, B.V., North-Holland 737-745
    • (1991) Artificial Neural Networks , vol.1 , pp. 737-745
    • Oja, E.1
  • 27
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 290 5500 (2000) 2323-2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 28
    • 22944459214 scopus 로고    scopus 로고
    • The principal components analysis of a graph, and its relationships to spectral clustering
    • Proceedings of the 15th European Conference on Machine Learning ECML, Pisa, Italy
    • M. Saerens, F. Fouss, L. Yen, P. Dupont, The principal components analysis of a graph, and its relationships to spectral clustering, in: Proceedings of the 15th European Conference on Machine Learning (ECML 2004), Lecture Notes in Artificial Intelligence, vol. 3201, Pisa, Italy, 2004.
    • (2004) Lecture Notes in Artificial Intelligence , vol.3201
    • Saerens, M.1    Fouss, F.2    Yen, L.3    Dupont, P.4
  • 29
    • 84887006810 scopus 로고
    • A nonlinear mapping algorithm for data structure analysis
    • Sammon J. A nonlinear mapping algorithm for data structure analysis. IEEE Transactions on Computers CC-18 5 (1969) 401-409
    • (1969) IEEE Transactions on Computers , vol.CC-18 , Issue.5 , pp. 401-409
    • Sammon, J.1
  • 30
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of nonlinear manifolds
    • Saul L., and Roweis S. Think globally, fit locally: unsupervised learning of nonlinear manifolds. Journal of Machine Learning Research 4 (2003) 119-155
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 31
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., and Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 32
    • 34250926052 scopus 로고
    • The analysis of proximities: multidimensional scaling with an unknown distance function (parts 1 and 2)
    • 219-249
    • Shepard R. The analysis of proximities: multidimensional scaling with an unknown distance function (parts 1 and 2). Psychometrika 27 (1962) 125-140 219-249
    • (1962) Psychometrika , vol.27 , pp. 125-140
    • Shepard, R.1
  • 33
    • 34250297158 scopus 로고
    • Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features
    • Takane Y., Young F., and de Leeuw J. Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika 42 (1977) 7-67
    • (1977) Psychometrika , vol.42 , pp. 7-67
    • Takane, Y.1    Young, F.2    de Leeuw, J.3
  • 34
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., de Silva V., and Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 290 5500 (2000) 2319-2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.3
  • 35
    • 84950351930 scopus 로고
    • Multidimensional scaling, I: theory and method
    • Torgerson W. Multidimensional scaling, I: theory and method. Psychometrika 17 (1952) 401-419
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.1
  • 37
    • 84958976659 scopus 로고    scopus 로고
    • Neighborhood preservation in nonlinear projection methods: an experimental study
    • Dorffner G., Bischof H., and Hornik K. (Eds), Springer, Berlin
    • Venna J., and Kaski S. Neighborhood preservation in nonlinear projection methods: an experimental study. In: Dorffner G., Bischof H., and Hornik K. (Eds). Proceedings of ICANN 2001 (2001), Springer, Berlin 485-491
    • (2001) Proceedings of ICANN 2001 , pp. 485-491
    • Venna, J.1    Kaski, S.2
  • 38
    • 33746617306 scopus 로고    scopus 로고
    • Local multidimensional scaling
    • Venna J., and Kaski S. Local multidimensional scaling. Neural Networks 19 (2006) 889-899
    • (2006) Neural Networks , vol.19 , pp. 889-899
    • Venna, J.1    Kaski, S.2
  • 40
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: exact definition and measurement
    • Villmann T., Der R., Herrmann M., and Martinetz T. Topology preservation in self-organizing feature maps: exact definition and measurement. IEEE Transactions on Neural Networks 8 2 (1997) 256-266
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.2 , pp. 256-266
    • Villmann, T.1    Der, R.2    Herrmann, M.3    Martinetz, T.4
  • 41
    • 33744949513 scopus 로고    scopus 로고
    • K. Weinberger, L. Saul, Unsupervised learning of image manifolds by semidefinite programming, International Journal of Computer Vision 70 (1) (2006) 77-90, in: A. Bobick, R. Chellappa, L. Davis (Guest Eds.), Special Issue: Computer Vision and Pattern Recognition-CVPR 2004.
    • K. Weinberger, L. Saul, Unsupervised learning of image manifolds by semidefinite programming, International Journal of Computer Vision 70 (1) (2006) 77-90, in: A. Bobick, R. Chellappa, L. Davis (Guest Eds.), Special Issue: Computer Vision and Pattern Recognition-CVPR 2004.
  • 43
    • 0001295575 scopus 로고
    • Differentiable manifolds
    • Whitney H. Differentiable manifolds. Annals of Mathematics 37 3 (1936) 645-680
    • (1936) Annals of Mathematics , vol.37 , Issue.3 , pp. 645-680
    • Whitney, H.1
  • 44
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • Young G., and Householder A. Discussion of a set of points in terms of their mutual distances. Psychometrika 3 (1938) 19-22
    • (1938) Psychometrika , vol.3 , pp. 19-22
    • Young, G.1    Householder, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.