메뉴 건너뛰기




Volumn , Issue , 2007, Pages 629-634

Semi-supervised dimensionality reduction

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING;

EID: 57749197763     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972771.73     Document Type: Conference Paper
Times cited : (327)

References (21)
  • 2
    • 12244300524 scopus 로고    scopus 로고
    • S. BASU, M. BILENKO, AND R. MOONEY, A probabilistic framework for semi-supervised clustering, in KDD'04, Seattle, WA, 2004, pp. 59-68.
    • S. BASU, M. BILENKO, AND R. MOONEY, A probabilistic framework for semi-supervised clustering, in KDD'04, Seattle, WA, 2004, pp. 59-68.
  • 3
    • 84880203756 scopus 로고    scopus 로고
    • M. BELKIN AND P. NIYOGI, Laplacian eigenmaps and spectral techniques for embedding and clustering, in NIPS 14, MIT Press, Cambridge, MA, 2002.
    • M. BELKIN AND P. NIYOGI, Laplacian eigenmaps and spectral techniques for embedding and clustering, in NIPS 14, MIT Press, Cambridge, MA, 2002.
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine
    • C. BLAKE, E. KEOGH, AND C. J. MERZ, UCI repository of machine learning databases, [http://www.ics.uci.edu/ ~mlearn/MLRepository.html], Department of Information and Computer Science, University of California, Irvine, 1998.
    • (1998) UCI repository of machine learning databases
    • BLAKE, C.1    KEOGH, E.2    MERZ, C.J.3
  • 5
    • 0031620208 scopus 로고    scopus 로고
    • A. BLUM AND T. MITCHELL, Combining labeled and unlabeled data with co-training, in COLT'98, Madison, WI, 1998, pp. 92-100.
    • A. BLUM AND T. MITCHELL, Combining labeled and unlabeled data with co-training, in COLT'98, Madison, WI, 1998, pp. 92-100.
  • 6
    • 33749246419 scopus 로고    scopus 로고
    • Efficient co-regularised least squares regression
    • Pittsburgh, PA
    • U. BREFELD, T. GARTNER, T. SCHEFFER, AND S. WRO-BEL, Efficient co-regularised least squares regression, in ICML'06, Pittsburgh, PA, 2006, pp. 137-144.
    • (2006) ICML'06 , pp. 137-144
    • BREFELD, U.1    GARTNER, T.2    SCHEFFER, T.3    WRO-BEL, S.4
  • 7
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxo-nomicproblems
    • R. A. FISHER, The use of multiple measurements in taxo-nomicproblems, Annals of Eugenics, 7 (1936), pp. 179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • FISHER, R.A.1
  • 9
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore, MD, 3rd ed
    • G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 3rd ed., 1996.
    • (1996) Matrix Computations
    • GOLUB, G.H.1    VAN LOAN, C.F.2
  • 10
    • 13444286179 scopus 로고    scopus 로고
    • X. HE AND P. NIYOGI, Locality preserving projections, in NIPS 16, MIT Press, Cambridge, MA, 2004.
    • X. HE AND P. NIYOGI, Locality preserving projections, in NIPS 16, MIT Press, Cambridge, MA, 2004.
  • 12
    • 33745162259 scopus 로고    scopus 로고
    • Learning with constrained and unlabeled data
    • San Diego, CA
    • T. LANGE, M. H. LAW, A. K. JAIN, AND J. BUHMANN, Learning with constrained and unlabeled data, in CVPR'05, San Diego, CA, 2005, pp. 731-738.
    • (2005) CVPR'05 , pp. 731-738
    • LANGE, T.1    LAW, M.H.2    JAIN, A.K.3    BUHMANN, J.4
  • 14
    • 84898968165 scopus 로고    scopus 로고
    • N. SHENTAL, A. BAR-HILLEL, T. HERTZ, AND D. WEIN-SHALL, Computing gaussian mixture models with em using equivalence constraints, in NIPS 16, MIT Press, Cambridge, MA, 2004.
    • N. SHENTAL, A. BAR-HILLEL, T. HERTZ, AND D. WEIN-SHALL, Computing gaussian mixture models with em using equivalence constraints, in NIPS 16, MIT Press, Cambridge, MA, 2004.
  • 15
    • 70449093538 scopus 로고    scopus 로고
    • W. TANG AND S. ZHONG, Pairwise constraints-guided di-mensinality reduction, in SDM'06 Workshop on Feature Selection for Data Mining, Bethesda, MD, 2006.
    • W. TANG AND S. ZHONG, Pairwise constraints-guided di-mensinality reduction, in SDM'06 Workshop on Feature Selection for Data Mining, Bethesda, MD, 2006.
  • 16
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • Williamstown, MA
    • K. WAGSTAFF, C. CARDIE, S. ROGERS, AND S. SCHROEDL, Constrained k-means clustering with background knowledge, in ICML'01, Williamstown, MA, 2001, pp. 577-584.
    • (2001) ICML'01 , pp. 577-584
    • WAGSTAFF, K.1    CARDIE, C.2    ROGERS, S.3    SCHROEDL, S.4
  • 17
    • 84879571292 scopus 로고    scopus 로고
    • E. P. XING, A. Y. NG, M. I. JORDAN, AND S. RUSSELL, Distance metric learning, with application to clustering with side-information, in NIPS 15, MIT Press, Cambridge, MA, 2003, pp. 505-512.
    • E. P. XING, A. Y. NG, M. I. JORDAN, AND S. RUSSELL, Distance metric learning, with application to clustering with side-information, in NIPS 15, MIT Press, Cambridge, MA, 2003, pp. 505-512.
  • 18
    • 33749248511 scopus 로고    scopus 로고
    • Semi-supervised nonlinear dimensionality reduction
    • Pittsburgh, PA
    • X. YANG, H. FU, H. ZHA, AND J. L. BARLOW, Semi-supervised nonlinear dimensionality reduction, in ICML'06, Pittsburgh, PA, 2006, pp. 1065-1072.
    • (2006) ICML'06 , pp. 1065-1072
    • YANG, X.1    FU, H.2    ZHA, H.3    BARLOW, J.L.4
  • 19
    • 84864072823 scopus 로고    scopus 로고
    • T. ZHANG AND R. K. ANDO, Analysis of spectral kernel disign based semi-supervised learning, in NIPS 18, MIT Press, Cambridge, MA, 2006, pp. 1601-1608.
    • T. ZHANG AND R. K. ANDO, Analysis of spectral kernel disign based semi-supervised learning, in NIPS 18, MIT Press, Cambridge, MA, 2006, pp. 1601-1608.
  • 20
    • 84880742718 scopus 로고    scopus 로고
    • Z.-H. ZHOU AND M. Li, Semi-supervised learning with co-training, in IJCAF05, Edinburgh, Scotland, 2005, pp. 908-913.
    • Z.-H. ZHOU AND M. Li, Semi-supervised learning with co-training, in IJCAF05, Edinburgh, Scotland, 2005, pp. 908-913.
  • 21
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Tech. Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2006
    • X. ZHU, Semi-supervised learning literature survey, Tech. Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, Madison, WI, 2006. http://www.cs.wisc.edu/̃jerryzhu/pub/ssl-survey.pdf.
    • ZHU, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.