메뉴 건너뛰기




Volumn 21, Issue 1, 2006, Pages 128-134

From graph to manifold Laplacian: The convergence rate

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33745397832     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2006.03.004     Document Type: Letter
Times cited : (344)

References (11)
  • 1
    • 26944489604 scopus 로고    scopus 로고
    • From graphs to manifolds-Weak and strong pointwise consistency of graph Laplacians
    • Auer P., and Meir R. (Eds), Springer-Verlag, Berlin
    • Hein M., Audibert J., and von Luxburg U. From graphs to manifolds-Weak and strong pointwise consistency of graph Laplacians. In: Auer P., and Meir R. (Eds). Proc. 18th Conf. Learning Theory (COLT), Lecture Notes Comput. Sci. vol. 3559 (2005), Springer-Verlag, Berlin 470-485
    • (2005) Proc. 18th Conf. Learning Theory (COLT), Lecture Notes Comput. Sci. , vol.3559 , pp. 470-485
    • Hein, M.1    Audibert, J.2    von Luxburg, U.3
  • 2
    • 33745386592 scopus 로고    scopus 로고
    • M. Belkin, Problems of learning on manifolds, Ph.D. dissertation, University of Chicago, 2003
  • 3
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA
    • Belkin M., and Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Adv. Neural Inform. Process. Syst. vol. 14 (2002), MIT Press, Cambridge, MA
    • (2002) Adv. Neural Inform. Process. Syst. , vol.14
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15 6 (2003) 1373-1396
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 26944439046 scopus 로고    scopus 로고
    • Towards a theoretical foundation for Laplacian-based manifold methods
    • Auer P., and Meir R. (Eds), Springer-Verlag, Berlin
    • Belkin M., and Niyogi P. Towards a theoretical foundation for Laplacian-based manifold methods. In: Auer P., and Meir R. (Eds). Proc. 18th Conf. Learning Theory (COLT), Lecture Notes Comput. Sci. vol. 3559 (2005), Springer-Verlag, Berlin 486-500
    • (2005) Proc. 18th Conf. Learning Theory (COLT), Lecture Notes Comput. Sci. , vol.3559 , pp. 486-500
    • Belkin, M.1    Niyogi, P.2
  • 6
    • 33745367608 scopus 로고    scopus 로고
    • S. Lafon, Diffusion maps and geometric harmonics, Ph.D. dissertation, Yale University, 2004
  • 7
    • 33847747801 scopus 로고    scopus 로고
    • Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators
    • Weiss Y., Schölkopf B., and Platt J. (Eds), MIT Press, Cambridge, MA
    • Nadler B., Lafon S., Coifman R.R., and Kevrekidis I.G. Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In: Weiss Y., Schölkopf B., and Platt J. (Eds). Adv. Neural Inform. Process. Syst. (NIPS) vol. 18 (2006), MIT Press, Cambridge, MA
    • (2006) Adv. Neural Inform. Process. Syst. (NIPS) , vol.18
    • Nadler, B.1    Lafon, S.2    Coifman, R.R.3    Kevrekidis, I.G.4
  • 8
    • 19644394100 scopus 로고    scopus 로고
    • Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
    • Coifman R.R., Lafon S., Lee A.B., Maggioni M., Nadler B., Warner F., and Zucker S.W. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. Proc. Natl. Acad. Sci. 102 21 (2005) 7426-7431
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , Issue.21 , pp. 7426-7431
    • Coifman, R.R.1    Lafon, S.2    Lee, A.B.3    Maggioni, M.4    Nadler, B.5    Warner, F.6    Zucker, S.W.7
  • 9
    • 19644366699 scopus 로고    scopus 로고
    • Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods
    • Coifman R.R., Lafon S., Lee A.B., Maggioni M., Nadler B., Warner F., and Zucker S.W. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods. Proc. Natl. Acad. Sci. 102 21 (2005) 7432-7437
    • (2005) Proc. Natl. Acad. Sci. , vol.102 , Issue.21 , pp. 7432-7437
    • Coifman, R.R.1    Lafon, S.2    Lee, A.B.3    Maggioni, M.4    Nadler, B.5    Warner, F.6    Zucker, S.W.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.