메뉴 건너뛰기




Volumn 133, Issue 3-4, 2018, Pages 1119-1131

Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran

Author keywords

Firefly Algorithm; Forecasting; Hybrid model; Multilayer perceptron; Pan evaporation; Support vector machine

Indexed keywords

ALGORITHM; ALTERNATIVE AGRICULTURE; CLIMATE PREDICTION; INSTRUMENTATION; METEOROLOGY; SUPPORT VECTOR MACHINE;

EID: 85027831982     PISSN: 0177798X     EISSN: 14344483     Source Type: Journal    
DOI: 10.1007/s00704-017-2244-0     Document Type: Article
Times cited : (156)

References (54)
  • 1
    • 78651472663 scopus 로고    scopus 로고
    • Modeling of daily pan evaporation using partial least squares regression
    • Abudu S, Cui C, King JP et al (2011) Modeling of daily pan evaporation using partial least squares regression. Sci China Technol Sci 54:163–174. doi:10.1007/s11431-010-4205-z
    • (2011) Sci China Technol Sci , vol.54 , pp. 163-174
    • Abudu, S.1    Cui, C.2    King, J.P.3
  • 2
    • 84964727663 scopus 로고    scopus 로고
    • Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm
    • et al
    • Al-Shammari ET, Mohammadi K, Keivani A et al (2016) Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm. J Irrig Drain Eng. doi:10.1061/(ASCE)IR.1943-4774.0001015
    • (2016) J Irrig Drain Eng
    • Al-Shammari, E.T.1    Mohammadi, K.2    Keivani, A.3
  • 3
    • 0034163592 scopus 로고    scopus 로고
    • Estimating daily pan evaporation with artificial neural networks
    • Bruton JM, McClendon RW, Hoogenboom G (2000) Estimating daily pan evaporation with artificial neural networks. Trans ASAE 43:491–496. doi:10.13031/2013.2730
    • (2000) Trans ASAE , vol.43 , pp. 491-496
    • Bruton, J.M.1    McClendon, R.W.2    Hoogenboom, G.3
  • 4
    • 70350070851 scopus 로고    scopus 로고
    • A comparative study for estimation of wave height using traditional and hybrid soft-computing methods
    • Cekaite A (2016) A comparative study for estimation of wave height using traditional and hybrid soft-computing methods. Int J Comput Collab Learn 4:319–341. doi:10.1007/s11412-009-9067-7
    • (2016) Int J Comput Collab Learn , vol.4 , pp. 319-341
    • Cekaite, A.1
  • 5
    • 84893812050 scopus 로고    scopus 로고
    • A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission
    • Ch S, Sohani SK, Kumar D et al (2014) A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission. Neurocomputing 129:279–288. doi:10.1016/j.neucom.2013.09.030
    • (2014) Neurocomputing , vol.129 , pp. 279-288
    • Ch, S.1    Sohani, S.K.2    Kumar, D.3
  • 6
    • 84903642315 scopus 로고    scopus 로고
    • Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature
    • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250. doi:10.5194/gmd-7-1247-2014
    • (2014) Geosci Model Dev , vol.7 , pp. 1247-1250
    • Chai, T.1    Draxler, R.R.2
  • 7
    • 84928136722 scopus 로고    scopus 로고
    • Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia
    • Deo RC, Şahin M (2015) Application of the artificial neural network model for prediction of monthly standardized precipitation and evapotranspiration index using hydrometeorological parameters and climate indices in eastern Australia. Atmos Res 161–162:65–81. doi:10.1016/j.atmosres.2015.03.018
    • (2015) Atmos Res , vol.161-162 , pp. 65-81
    • Deo, R.C.1    Şahin, M.2
  • 8
    • 85017512971 scopus 로고    scopus 로고
    • Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City
    • Deo RC, Samui P (2017) Forecasting evaporative loss by least-square support-vector regression and evaluation with genetic programming, Gaussian process, and minimax probability machine regression: case study of Brisbane City. J Hydrol Eng 22:5017003. doi:10.1061/(ASCE)HE.1943-5584.0001506
    • (2017) J Hydrol Eng , vol.22 , pp. 5017003
    • Deo, R.C.1    Samui, P.2
  • 9
    • 84941335923 scopus 로고    scopus 로고
    • Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models
    • Deo RC, Samui P, Kim D (2015) Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models. Stoch Environ Res Risk Assess. doi:10.1007/s00477-015-1153-y
    • (2015) Stoch Environ Res Risk Assess
    • Deo, R.C.1    Samui, P.2    Kim, D.3
  • 10
    • 77953962223 scopus 로고    scopus 로고
    • Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems
    • Dogan E, Gumrukcuoglu M, Sandalci M, Opan M (2010) Modelling of evaporation from the reservoir of Yuvacik dam using adaptive neuro-fuzzy inference systems. Eng Appl Artif Intell 23:961–967. doi:10.1016/j.engappai.2010.03.007
    • (2010) Eng Appl Artif Intell , vol.23 , pp. 961-967
    • Dogan, E.1    Gumrukcuoglu, M.2    Sandalci, M.3    Opan, M.4
  • 12
    • 84957593712 scopus 로고    scopus 로고
    • Application of soft computing based hybrid models in hydrological variables modeling: A comprehensive review
    • Fahimi F, Yaseen ZM, El-shafie A (2017) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol 128 (3–4): 875 – 903
    • (2017) Theor Appl Climatol , vol.128 , Issue.3-4 , pp. 875-903
    • Fahimi, F.1    Yaseen, Z.M.2    El-Shafie, A.3
  • 13
    • 84884589096 scopus 로고    scopus 로고
    • Relative importance of parameters affecting wind speed prediction using artificial neural networks
    • Ghorbani MA, Khatibi R, Hosseini B, Bilgili M (2013) Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theor Appl Climatol 114:107–114. doi:10.1007/s00704-012-0821-9
    • (2013) Theor Appl Climatol , vol.114 , pp. 107-114
    • Ghorbani, M.A.1    Khatibi, R.2    Hosseini, B.3    Bilgili, M.4
  • 14
    • 84961195082 scopus 로고    scopus 로고
    • A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction
    • Ghorbani MA, Zadeh HA, Isazadeh M, Terzi O (2016) A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ Earth Sci 75:1–14. doi:10.1007/s12665-015-5096-x
    • (2016) Environ Earth Sci , vol.75 , pp. 1-14
    • Ghorbani, M.A.1    Zadeh, H.A.2    Isazadeh, M.3    Terzi, O.4
  • 15
    • 85019152630 scopus 로고    scopus 로고
    • Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point
    • Ghorbani MA, Shamshirband S, Zare Haghi D et al (2017) Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil Tillage Res 172:32–38. doi:10.1016/j.still.2017.04.009
    • (2017) Soil Tillage Res , vol.172 , pp. 32-38
    • Ghorbani, M.A.1    Shamshirband, S.2    Zare Haghi, D.3
  • 17
    • 84924272182 scopus 로고    scopus 로고
    • Soft computing approaches for forecasting reference evapotranspiration
    • Gocić M, Motamedi S, Shamshirband S et al (2015) Soft computing approaches for forecasting reference evapotranspiration. Comput Electron Agric 113:164–173. doi:10.1016/j.compag.2015.02.010
    • (2015) Comput Electron Agric , vol.113 , pp. 164-173
    • Gocić, M.1    Motamedi, S.2    Shamshirband, S.3
  • 18
    • 84898464831 scopus 로고    scopus 로고
    • Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
    • Goyal MK, Bharti B, Quilty J et al (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst Appl 41:5267–5276. doi:10.1016/j.eswa.2014.02.047
    • (2014) Expert Syst Appl , vol.41 , pp. 5267-5276
    • Goyal, M.K.1    Bharti, B.2    Quilty, J.3
  • 19
    • 84956852398 scopus 로고    scopus 로고
    • Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey
    • Günay ME (2016) Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: case of Turkey. Energy Policy 90:92–101. doi:10.1016/j.enpol.2015.12.019
    • (2016) Energy Policy , vol.90 , pp. 92-101
    • Günay, M.E.1
  • 20
    • 84860700128 scopus 로고    scopus 로고
    • A speech recognition system based on structure equivalent fuzzy neural network trained by firefly algorithm
    • IEEE, Penang
    • Hassanzadeh T, Faez K, Seyfi G (2012) A speech recognition system based on structure equivalent fuzzy neural network trained by firefly algorithm. In Biomedical Engineering (ICoBE), 2012 International Conference on (pp. 63–67). IEEE, Penang. doi:10.1109/ICoBE.2012.6178956
    • (2012) Biomedical Engineering (Icobe), 2012 International Conference On , pp. 63-67
    • Hassanzadeh, T.1    Faez, K.2    Seyfi, G.3
  • 21
    • 84893700335 scopus 로고    scopus 로고
    • Methods for uncertainty assessment of climate models and model predictions over East Asia
    • et al
    • Heo K-Y, Ha K-J, Yun K-S et al (2013) Methods for uncertainty assessment of climate models and model predictions over East Asia. Int J Climatol. doi:10.1002/joc.3692
    • (2013) Int J Climatol
    • Heo, K.-Y.1    Ha, K.-J.2    Yun, K.-S.3
  • 22
    • 67650639040 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
    • Hong W-C (2009) Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int J Electr Power Energy Syst 31:409–417. doi:10.1016/j.ijepes.2009.03.020
    • (2009) Int J Electr Power Energy Syst , vol.31 , pp. 409-417
    • Hong, W.-C.1
  • 23
    • 84943393747 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Hsu C-W, Chang C-C, Lin C-J (2008) A practical guide to support vector classification. BJU Int 101:1396–1400. doi:10.1177/02632760022050997
    • (2008) BJU Int , vol.101 , pp. 1396-1400
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 25
    • 34147216758 scopus 로고    scopus 로고
    • Climate change 2007: the physical science basis
    • IPCC (2007) Climate change 2007: the physical science basis. Intergov Panel Clim Chang 446:727–728. doi:10.1038/446727a
    • (2007) Intergov Panel Clim Chang , vol.446 , pp. 727-728
  • 26
    • 84973901088 scopus 로고    scopus 로고
    • Integrating firefly algorithm in artificial neural network models for accurate software cost predictions
    • Kaushik A, Tayal DK, Yadav K, Kaur A (2016) Integrating firefly algorithm in artificial neural network models for accurate software cost predictions. J Softw Evol Process 28:665–688. doi:10.1002/smr.1792
    • (2016) J Softw Evol Process , vol.28 , pp. 665-688
    • Kaushik, A.1    Tayal, D.K.2    Yadav, K.3    Kaur, A.4
  • 27
    • 84899800725 scopus 로고    scopus 로고
    • A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting
    • Kavousi-Fard A, Samet H, Marzbani F (2014) A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst Appl 41:6047–6056. doi:10.1016/j.eswa.2014.03.053
    • (2014) Expert Syst Appl , vol.41 , pp. 6047-6056
    • Kavousi-Fard, A.1    Samet, H.2    Marzbani, F.3
  • 28
  • 29
    • 84977083335 scopus 로고    scopus 로고
    • A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method
    • Keshtegar B, Piri J, Kisi O (2016) A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Comput Electron Agric 127:120–130. doi:10.1016/j.compag.2016.05.018
    • (2016) Comput Electron Agric , vol.127 , pp. 120-130
    • Keshtegar, B.1    Piri, J.2    Kisi, O.3
  • 30
    • 69049111816 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using adaptive neural-based fuzzy inference system
    • Keskin ME, Terzi Ö, Taylan D (2009) Estimating daily pan evaporation using adaptive neural-based fuzzy inference system. Theor Appl Climatol 98:79–87. doi:10.1007/s00704-008-0092-7
    • (2009) Theor Appl Climatol , vol.98 , pp. 79-87
    • Keskin, M.E.1    Terzi, Ö.2    Taylan, D.3
  • 31
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kişi Ö (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329:636–646. doi:10.1016/j.jhydrol.2006.03.015
    • (2006) J Hydrol , vol.329 , pp. 636-646
    • Kişi, Ö.1
  • 32
    • 34447337473 scopus 로고    scopus 로고
    • Evapotranspiration modelling from climatic data using a neural computing technique
    • Kisi O (2007) Evapotranspiration modelling from climatic data using a neural computing technique. Hydrol Process 21:1925–1934. doi:10.1002/hyp.6403
    • (2007) Hydrol Process , vol.21 , pp. 1925-1934
    • Kisi, O.1
  • 33
    • 84960423143 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree
    • Kisi O, Genc O, Dinc S, Zounemat-Kermani M (2016) Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Comput Electron Agric 122:112–117. doi:10.1016/j.compag.2016.01.026
    • (2016) Comput Electron Agric , vol.122 , pp. 112-117
    • Kisi, O.1    Genc, O.2    Dinc, S.3    Zounemat-Kermani, M.4
  • 34
    • 84962783538 scopus 로고    scopus 로고
    • Forecasting daily streamflow using online sequential extreme learning machines
    • Lima AR, Cannon AJ, Hsieh WW (2016) Forecasting daily streamflow using online sequential extreme learning machines. J Hydrol 537:431–443. doi:10.1016/j.jhydrol.2016.03.017
    • (2016) J Hydrol , vol.537 , pp. 431-443
    • Lima, A.R.1    Cannon, A.J.2    Hsieh, W.W.3
  • 35
    • 84872509836 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods
    • Lin HT, Lin CJ (2003) A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Neural Comput 1–32
    • (2003) Neural Comput , pp. 1-32
    • Lin, H.T.1    Lin, C.J.2
  • 36
    • 70450219535 scopus 로고    scopus 로고
    • Firefly algorithm for continuous constrained optimization tasks
    • Lukasik S, Zak S (2009) Firefly algorithm for continuous constrained optimization tasks. Firefly Algorithm Contin Constrained Optim Tasks 5796:97–106. doi:10.1007/978-3-642-04441-0_8
    • (2009) Firefly Algorithm Contin Constrained Optim Tasks , vol.5796 , pp. 97-106
    • Lukasik, S.1    Zak, S.2
  • 37
    • 84867013911 scopus 로고    scopus 로고
    • An improved evaporation dome for forest environments
    • Macfarlane C, Ogden GN (2012) An improved evaporation dome for forest environments. Comput Electron Agric 89:126–129. doi:10.1016/j.compag.2012.09.004
    • (2012) Comput Electron Agric , vol.89 , pp. 126-129
    • Macfarlane, C.1    Ogden, G.N.2
  • 38
    • 84964054524 scopus 로고    scopus 로고
    • Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region
    • Mba L, Meukam P, Kemajou A (2016) Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region. Energy Build 121:32–42. doi:10.1016/j.enbuild.2016.03.046
    • (2016) Energy Build , vol.121 , pp. 32-42
    • Mba, L.1    Meukam, P.2    Kemajou, A.3
  • 39
  • 40
    • 67650621579 scopus 로고    scopus 로고
    • Application and analysis of support vector machine based simulation for runoff and sediment yield
    • Misra D, Oommen T, Agarwal A et al (2009) Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosyst Eng 103:527–535. doi:10.1016/j.biosystemseng.2009.04.017
    • (2009) Biosyst Eng , vol.103 , pp. 527-535
    • Misra, D.1    Oommen, T.2    Agarwal, A.3
  • 41
    • 57549095413 scopus 로고    scopus 로고
    • Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques
    • Moghaddamnia A, Ghafari Gousheh M, Piri J et al (2009) Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques. Adv Water Resour 32:88–97. doi:10.1016/j.advwatres.2008.10.005
    • (2009) Adv Water Resour , vol.32 , pp. 88-97
    • Moghaddamnia, A.1    Ghafari Gousheh, M.2    Piri, J.3
  • 42
    • 84944683850 scopus 로고    scopus 로고
    • Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites
    • Mohanty S, Jha MK, Raul SK et al (2015) Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resour Manag 29:5521–5532. doi:10.1007/s11269-015-1132-6
    • (2015) Water Resour Manag , vol.29 , pp. 5521-5532
    • Mohanty, S.1    Jha, M.K.2    Raul, S.K.3
  • 43
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I—a discussion of principles
    • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6
    • (1970) J Hydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 44
    • 84966632250 scopus 로고    scopus 로고
    • A novel method to water level prediction using RBF and FFA
    • Soleymani SA, Goudarzi S, Anisi MH et al (2016) A novel method to water level prediction using RBF and FFA. Water Resour Manag:1–19. doi:10.1007/s11269-016-1347-1
    • (2016) Water Resour Manag , pp. 1-19
    • Soleymani, S.A.1    Goudarzi, S.2    Anisi, M.H.3
  • 45
    • 0034962651 scopus 로고    scopus 로고
    • Summarizing multiple aspects of model performance in a single diagram
    • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. doi:10.1029/2000JD900719
    • (2001) J Geophys Res Atmos , vol.106 , pp. 7183-7192
    • Taylor, K.E.1
  • 46
    • 23044444044 scopus 로고    scopus 로고
    • Temperature-based approaches for estimating reference evapotranspiration
    • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain Eng 131:316–323. doi:10.1061/(ASCE)0733-9437(2005)131:4(316)
    • (2005) J Irrig Drain Eng , vol.131 , pp. 316-323
    • Trajkovic, S.1
  • 48
    • 30444437204 scopus 로고    scopus 로고
    • Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
    • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. doi:10.3354/cr030079
    • (2005) Clim Res , vol.30 , pp. 79-82
    • Willmott, C.J.1    Matsuura, K.2
  • 49
    • 84867999784 scopus 로고    scopus 로고
    • A refined index of model performance
    • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. doi:10.1002/joc.2419
    • (2012) Int J Climatol , vol.32 , pp. 2088-2094
    • Willmott, C.J.1    Robeson, S.M.2    Matsuura, K.3
  • 50
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimization
    • Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimization. Int J Bio-inspired Comput 2(2):78–84. doi:10.1504/IJBIC.2010.032124
    • (2010) Int J Bio-inspired Comput , vol.2 , Issue.2 , pp. 78-84
    • Yang, X.-S.1
  • 51
    • 84945157492 scopus 로고    scopus 로고
    • Artificial intelligence based models for stream-flow forecasting: 2000–2015
    • Yaseen ZM, El-shafie A, Jaafar O et al (2015) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. doi:10.1016/j.jhydrol.2015.10.038
    • (2015) J Hydrol , vol.530 , pp. 829-844
    • Yaseen, Z.M.1    El-shafie, A.2    Jaafar, O.3
  • 53
    • 84994591754 scopus 로고    scopus 로고
    • Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq
    • et al, (, b
    • Yaseen ZM, Jaafar O, Deo RC et al (2016b) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol. doi:10.1016/j.jhydrol.2016.09.035
    • (2016) J Hydrol
    • Yaseen, Z.M.1    Jaafar, O.2    Deo, R.C.3
  • 54
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon H, Jun SC, Hyun Y, Bae GO, & Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. JHydrol 396(1):128–138
    • (2011) Jhydrol , vol.396 , Issue.1 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.