메뉴 건너뛰기




Volumn 122, Issue , 2016, Pages 112-117

Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree

Author keywords

ANN; C RT; CHAID; Machine learning algorithms; Pan evaporation

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; FORESTRY; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; POTABLE WATER; RESERVOIRS (WATER); WATER RESOURCES; WATER SUPPLY; WATER SUPPLY SYSTEMS; WIND;

EID: 84960423143     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2016.01.026     Document Type: Article
Times cited : (76)

References (38)
  • 1
    • 0002235173 scopus 로고
    • A method of choosing multiway partitions for classification and decision trees
    • Biggs D., deVille B., Suen E. A method of choosing multiway partitions for classification and decision trees. J. Appl. Stat. 1991, 18(1):49-62.
    • (1991) J. Appl. Stat. , vol.18 , Issue.1 , pp. 49-62
    • Biggs, D.1    deVille, B.2    Suen, E.3
  • 2
    • 0034163592 scopus 로고    scopus 로고
    • Estimating daily pan evaporation with artificial neural networks
    • Bruton J.M., McClendon R.W., Hoogenboom G. Estimating daily pan evaporation with artificial neural networks. Trans. ASAE 2000, 43(2):491-496.
    • (2000) Trans. ASAE , vol.43 , Issue.2 , pp. 491-496
    • Bruton, J.M.1    McClendon, R.W.2    Hoogenboom, G.3
  • 3
    • 84877578251 scopus 로고    scopus 로고
    • Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan
    • Chang F.J., Sun W., Chung C.H. Dynamic factor analysis and artificial neural network for estimating pan evaporation at multiple stations in northern Taiwan. Hydrol. Sci. J. 2013, 58(4):813-825.
    • (2013) Hydrol. Sci. J. , vol.58 , Issue.4 , pp. 813-825
    • Chang, F.J.1    Sun, W.2    Chung, C.H.3
  • 4
    • 0033749212 scopus 로고    scopus 로고
    • Classification and regression trees: a powerful yet simple technique for ecological data analysis
    • De'ath G., Fabricius K.E. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 2000, 81(11):3178-3192.
    • (2000) Ecology , vol.81 , Issue.11 , pp. 3178-3192
    • De'ath, G.1    Fabricius, K.E.2
  • 5
    • 34249283772 scopus 로고    scopus 로고
    • Estimation of daily evaporation using artificial neural networks
    • Dogan E., Isik S., Sandalci M. Estimation of daily evaporation using artificial neural networks. Teknik Dergi 2007, 18(2):4119-4131.
    • (2007) Teknik Dergi , vol.18 , Issue.2 , pp. 4119-4131
    • Dogan, E.1    Isik, S.2    Sandalci, M.3
  • 6
    • 67649515826 scopus 로고    scopus 로고
    • Estimation of monthly pan evaporation using artificial neural networks and support vector machines
    • Eslamian S.S., Gohari S.A., Biabanaki M., Malekian R. Estimation of monthly pan evaporation using artificial neural networks and support vector machines. J. Appl. Sci. 2008, 8(19):3497-3502.
    • (2008) J. Appl. Sci. , vol.8 , Issue.19 , pp. 3497-3502
    • Eslamian, S.S.1    Gohari, S.A.2    Biabanaki, M.3    Malekian, R.4
  • 7
    • 84940661915 scopus 로고    scopus 로고
    • A comparative evaluation of shear stress modeling based on machine learning methods in small streams
    • Genc O., Gonen B., Ardiclioglu M. A comparative evaluation of shear stress modeling based on machine learning methods in small streams. J. Hydroinformatics 2015, 17(5):805-816.
    • (2015) J. Hydroinformatics , vol.17 , Issue.5 , pp. 805-816
    • Genc, O.1    Gonen, B.2    Ardiclioglu, M.3
  • 8
    • 80052736234 scopus 로고    scopus 로고
    • PLS regression-based pan evaporation and minimum-maximum temperature projections for an arid lake basin in India
    • Goyal M.K., Ojha C.S.P. PLS regression-based pan evaporation and minimum-maximum temperature projections for an arid lake basin in India. Theoret. Appl. Climatol. 2011, 105(3-4):403-415.
    • (2011) Theoret. Appl. Climatol. , vol.105 , Issue.3-4 , pp. 403-415
    • Goyal, M.K.1    Ojha, C.S.P.2
  • 9
    • 84898464831 scopus 로고    scopus 로고
    • Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
    • Goyal M.K., Bharti B., Quilty J., Adamowski J., Pandey A. Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst. Appl. 2014, 41:5267-5276.
    • (2014) Expert Syst. Appl. , vol.41 , pp. 5267-5276
    • Goyal, M.K.1    Bharti, B.2    Quilty, J.3    Adamowski, J.4    Pandey, A.5
  • 10
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass G.V. An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 1980, 29(2):119-127.
    • (1980) Appl. Stat. , vol.29 , Issue.2 , pp. 119-127
    • Kass, G.V.1
  • 11
    • 10244243705 scopus 로고    scopus 로고
    • Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey
    • Keskin M.E., Terzi O., Taylan D. Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey. Hydrol. Sci. J. 2004, 49(6):1001-1010.
    • (2004) Hydrol. Sci. J. , vol.49 , Issue.6 , pp. 1001-1010
    • Keskin, M.E.1    Terzi, O.2    Taylan, D.3
  • 12
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S., Kim H.S. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J. Hydrol. 2008, 351(3-4):299-317.
    • (2008) J. Hydrol. , vol.351 , Issue.3-4 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 13
    • 84927134727 scopus 로고    scopus 로고
    • Evaluation of pan evaporation modeling with two different neural networks and weather station data
    • Kim S., Singh V.P., Seo Y. Evaluation of pan evaporation modeling with two different neural networks and weather station data. Theoret. Appl. Climatol. 2014, 17(1):1-13.
    • (2014) Theoret. Appl. Climatol. , vol.17 , Issue.1 , pp. 1-13
    • Kim, S.1    Singh, V.P.2    Seo, Y.3
  • 14
    • 84932605982 scopus 로고    scopus 로고
    • Predicting daily pan evaporation by soft computing models with limited climatic data
    • Kim S., Shiri J., Singh V.P., Kisi O., Landeras G. Predicting daily pan evaporation by soft computing models with limited climatic data. Hydrol. Sci. J. 2015, 60(6):1120-1136.
    • (2015) Hydrol. Sci. J. , vol.60 , Issue.6 , pp. 1120-1136
    • Kim, S.1    Shiri, J.2    Singh, V.P.3    Kisi, O.4    Landeras, G.5
  • 15
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi O. River flow modeling using artificial neural networks. J. Hydrol. Eng. 2004, 9(1):60-63.
    • (2004) J. Hydrol. Eng. , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 16
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kisi O. Daily pan evaporation modelling using a neuro-fuzzy computing technique. J. Hydrol. 2006, 329(3-4):636-646.
    • (2006) J. Hydrol. , vol.329 , Issue.3-4 , pp. 636-646
    • Kisi, O.1
  • 17
    • 84934325903 scopus 로고    scopus 로고
    • Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree
    • Kisi O. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 2015, 528(2015):312-320.
    • (2015) J. Hydrol. , vol.528 , Issue.2015 , pp. 312-320
    • Kisi, O.1
  • 18
    • 84884985563 scopus 로고    scopus 로고
    • Development of a support-vector-machine-based model for daily pan evaporation estimation
    • Lin G.F., Lin H.Y., Wu M.C. Development of a support-vector-machine-based model for daily pan evaporation estimation. Hydrol. Process. 2013, 27(22):3115-3127.
    • (2013) Hydrol. Process. , vol.27 , Issue.22 , pp. 3115-3127
    • Lin, G.F.1    Lin, H.Y.2    Wu, M.C.3
  • 19
    • 84925487359 scopus 로고    scopus 로고
    • Pan evaporation simulation based on daily meteorological data using soft computing techniques and multiple linear regression
    • Malik A., Kumar A. Pan evaporation simulation based on daily meteorological data using soft computing techniques and multiple linear regression. Water Resour. Manage. 2015, 29:1859-1872.
    • (2015) Water Resour. Manage. , vol.29 , pp. 1859-1872
    • Malik, A.1    Kumar, A.2
  • 22
    • 84939883779 scopus 로고    scopus 로고
    • Assessing the predictive utility of logistic regression, classification and regression tree, chi-squared automatic interaction detection, and neural network models in predicting inmate misconduct
    • Ngo F.T., Govindu R., Agarwal A. Assessing the predictive utility of logistic regression, classification and regression tree, chi-squared automatic interaction detection, and neural network models in predicting inmate misconduct. Am. J. Crim. Justice 2015, 40(1):47-74.
    • (2015) Am. J. Crim. Justice , vol.40 , Issue.1 , pp. 47-74
    • Ngo, F.T.1    Govindu, R.2    Agarwal, A.3
  • 23
    • 84856076556 scopus 로고    scopus 로고
    • Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes
    • Nourani V., Fard M.S. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv. Eng. Softw. 2012, 47:127-146.
    • (2012) Adv. Eng. Softw. , vol.47 , pp. 127-146
    • Nourani, V.1    Fard, M.S.2
  • 24
    • 68049104176 scopus 로고    scopus 로고
    • Daily pan evaporation modeling in a hot and dry climate
    • Piri J., et al. Daily pan evaporation modeling in a hot and dry climate. J. Hydrol. Eng. 2009, 14(8):803-811.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.8 , pp. 803-811
    • Piri, J.1
  • 25
    • 67649111107 scopus 로고    scopus 로고
    • Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models
    • Rajaee T., Mirbagheri S.A., Zounemat-Kermani M., Nourani V. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ. 2009, 407(17):4916-4927.
    • (2009) Sci. Total Environ. , vol.407 , Issue.17 , pp. 4916-4927
    • Rajaee, T.1    Mirbagheri, S.A.2    Zounemat-Kermani, M.3    Nourani, V.4
  • 27
    • 84859634066 scopus 로고    scopus 로고
    • Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs
    • Samui P., Dixon B. Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol. Process. 2012, 26(9):1361-1369.
    • (2012) Hydrol. Process. , vol.26 , Issue.9 , pp. 1361-1369
    • Samui, P.1    Dixon, B.2
  • 28
    • 84880453075 scopus 로고    scopus 로고
    • M5 model trees and neural networks based modelling of ET0 in Ankara, Turkey
    • Sattari M.T., Pal M., Yurekli K., Unlukara A. M5 model trees and neural networks based modelling of ET0 in Ankara, Turkey. Turk. J. Eng. Environ. Sci. 2013, 37:211-219.
    • (2013) Turk. J. Eng. Environ. Sci. , vol.37 , pp. 211-219
    • Sattari, M.T.1    Pal, M.2    Yurekli, K.3    Unlukara, A.4
  • 29
    • 77952290338 scopus 로고    scopus 로고
    • A comparative study of daily pan evaporation estimation using ANN, regression and climate based models
    • Shirsath P.B., Singh A.K. A comparative study of daily pan evaporation estimation using ANN, regression and climate based models. Water Resour. Manage. 2010, 24:1571-1581.
    • (2010) Water Resour. Manage. , vol.24 , pp. 1571-1581
    • Shirsath, P.B.1    Singh, A.K.2
  • 30
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • Sudheer K.P., Gosain A.K., Rangan D.M., Saheb S.M. Modelling evaporation using an artificial neural network algorithm. Hydrol. Process. 2002, 16:3189-3202.
    • (2002) Hydrol. Process. , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.M.3    Saheb, S.M.4
  • 31
    • 77952916523 scopus 로고    scopus 로고
    • Comparison of artificial neural networks and empirical equations to estimate daily pan evaporation
    • Terzi O., Keskin M.E. Comparison of artificial neural networks and empirical equations to estimate daily pan evaporation. Irrig. Drain. 2010, 59:215-225.
    • (2010) Irrig. Drain. , vol.59 , pp. 215-225
    • Terzi, O.1    Keskin, M.E.2
  • 32
    • 84923036000 scopus 로고    scopus 로고
    • Monthly evaporation forecasting using artificial neural networks and support vector machines
    • Tezel G., Buyukyildiz M. Monthly evaporation forecasting using artificial neural networks and support vector machines. Theor Appl Climatol 2015, 10.1007/s00704-015-1392-3.
    • (2015) Theor Appl Climatol
    • Tezel, G.1    Buyukyildiz, M.2
  • 33
    • 56349112446 scopus 로고    scopus 로고
    • Using Kaplan-Meier analysis together with decision treemethods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients
    • Ture M., Tokatli F., Kurt I. Using Kaplan-Meier analysis together with decision treemethods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Syst. Appl. 2009, 36:2017-2026.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2017-2026
    • Ture, M.1    Tokatli, F.2    Kurt, I.3
  • 34
    • 84960353145 scopus 로고    scopus 로고
    • URL 1
    • URL 1 http://www.mgm.gov.tr/veridegerlendirme/kuraklik-analizi.aspx?d=yillik.
  • 35
    • 33748678906 scopus 로고    scopus 로고
    • Evaluating chi-squared automatic interaction detection
    • van Diepen M., Franses P.H. Evaluating chi-squared automatic interaction detection. Inf. Syst. 2006, 31(8):814-831.
    • (2006) Inf. Syst. , vol.31 , Issue.8 , pp. 814-831
    • van Diepen, M.1    Franses, P.H.2
  • 36
    • 70349482094 scopus 로고    scopus 로고
    • An investigation of the hydrological requirements of River Red Gum (Eucalyptus camaldulensis) Forest, using Classification and Regression Tree modelling
    • Wen L., Ling J., Saintilan N., Rogers K. An investigation of the hydrological requirements of River Red Gum (Eucalyptus camaldulensis) Forest, using Classification and Regression Tree modelling. Ecohydrology 2009, 2(2):143-155.
    • (2009) Ecohydrology , vol.2 , Issue.2 , pp. 143-155
    • Wen, L.1    Ling, J.2    Saintilan, N.3    Rogers, K.4
  • 37
    • 84963837641 scopus 로고    scopus 로고
    • A community-level, mesoscale analysis of fish assemblage structure in shoreline habitats of a large river using multivariate regression trees
    • Wilkes M.A., Maddock I., Link O., Habit E. A community-level, mesoscale analysis of fish assemblage structure in shoreline habitats of a large river using multivariate regression trees. River Res. Appl. 2015.
    • (2015) River Res. Appl.
    • Wilkes, M.A.1    Maddock, I.2    Link, O.3    Habit, E.4
  • 38
    • 84879749443 scopus 로고    scopus 로고
    • Hydrometeorological parameters in prediction of soil temperature by means of artificial neural network: Case study in Wyoming
    • Zounemat-Kermani M. Hydrometeorological parameters in prediction of soil temperature by means of artificial neural network: Case study in Wyoming. J. Hydrol. Eng. 2012, 18(6):707-718.
    • (2012) J. Hydrol. Eng. , vol.18 , Issue.6 , pp. 707-718
    • Zounemat-Kermani, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.