메뉴 건너뛰기




Volumn 30, Issue 6, 2016, Pages 1769-1784

Estimation of monthly evaporative loss using relevance vector machine, extreme learning machine and multivariate adaptive regression spline models

Author keywords

Extreme learning machine; Machine learning; Multivariate adaptive regression spline; Prediction of evaporation; Relevance vector machine

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; ERROR STATISTICS; FEEDFORWARD NEURAL NETWORKS; FORECASTING; FUNCTIONS; INCIDENT SOLAR RADIATION; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; MEAN SQUARE ERROR; NETWORK LAYERS; NEURAL NETWORKS; PERSONNEL TRAINING; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; SENSITIVITY ANALYSIS; SPLINES; WATER MANAGEMENT; WATER RESOURCES;

EID: 84941335923     PISSN: 14363240     EISSN: 14363259     Source Type: Journal    
DOI: 10.1007/s00477-015-1153-y     Document Type: Article
Times cited : (125)

References (72)
  • 1
    • 84862685995 scopus 로고    scopus 로고
    • Application of artificial neural networks to rainfall forecasting in Queensland
    • Abbot J, Marohasy J (2012) Application of artificial neural networks to rainfall forecasting in Queensland. Aust Adv Atmos Sci 29:717–730
    • (2012) Aust Adv Atmos Sci , vol.29 , pp. 717-730
    • Abbot, J.1    Marohasy, J.2
  • 2
    • 84889646990 scopus 로고    scopus 로고
    • Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
    • Abbot J, Marohasy J (2014) Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks. Atmos Res 138:166–178. doi:10.1016/j.atmosres.2013.11.002
    • (2014) Atmos Res , vol.138 , pp. 166-178
    • Abbot, J.1    Marohasy, J.2
  • 3
    • 84902190454 scopus 로고    scopus 로고
    • Is neural network a reliable forecaster on earth? a MARS query!
    • Mira José, Prieto Alberto, (eds), Springer, Berlin
    • Abraham A, Steinberg D (2001) Is neural network a reliable forecaster on earth? a MARS query! In: Mira José, Prieto Alberto (eds) Bio-inspired applications of connectionism. Springer, Berlin, pp 679–686
    • (2001) Bio-inspired applications of connectionism , pp. 679-686
    • Abraham, A.1    Steinberg, D.2
  • 4
    • 84906777236 scopus 로고    scopus 로고
    • Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine
    • Acharya N, Shrivastava NA, Panigrahi B, Mohanty U (2013) Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine. Clim Dyns 43(5–6):1303–1310
    • (2013) Clim Dyns , vol.43 , Issue.5-6 , pp. 1303-1310
    • Acharya, N.1    Shrivastava, N.A.2    Panigrahi, B.3    Mohanty, U.4
  • 5
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski JF (2008) Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J Hydrol 353:247–266
    • (2008) J Hydrol , vol.353 , pp. 247-266
    • Adamowski, J.F.1
  • 6
    • 84856246099 scopus 로고    scopus 로고
    • Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal
    • Adamowski J, Fung Chan H, Prasher SO, Ozga-Zielinski B, Sliusarieva A, Canada
    • Adamowski J, Fung Chan H, Prasher SO, Ozga-Zielinski B, Sliusarieva A (2012) Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resour Res 48. doi:10.1029/2010WR009945
    • (2012) Water Resour Res 48
  • 7
    • 14244253011 scopus 로고    scopus 로고
    • SWAT2000: current capabilities and research opportunities in applied watershed modelling
    • Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrol Process 19:563–572
    • (2005) Hydrol Process , vol.19 , pp. 563-572
    • Arnold, J.G.1    Fohrer, N.2
  • 8
    • 0343347137 scopus 로고
    • Discussion: multivariate adaptive regression splines
    • Barron AR, Xiao X (1991) Discussion: multivariate adaptive regression splines. Ann Stat 19:67–82
    • (1991) Ann Stat , vol.19 , pp. 67-82
    • Barron, A.R.1    Xiao, X.2
  • 9
    • 84888875654 scopus 로고    scopus 로고
    • Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression
    • Belayneh A, Adamowski J (2012) Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl Comput Intell Soft Comput 2012:6. doi:10.1155/2012/794061
    • (2012) Appl Comput Intell Soft Comput , vol.2012 , pp. 6
    • Belayneh, A.1    Adamowski, J.2
  • 13
    • 0030683666 scopus 로고    scopus 로고
    • Rock properties and seismic attenuation: neural network analysis
    • Boadu FK (1997) Rock properties and seismic attenuation: neural network analysis. Pure appl Geophys 149:507–524
    • (1997) Pure appl Geophys , vol.149 , pp. 507-524
    • Boadu, F.K.1
  • 14
    • 84958170568 scopus 로고    scopus 로고
    • Predictive modelling with panel data and multivariate adaptive regression splines: case of farmers crop delivery for a harvest season ahead.
    • Borodin V, Bourtembourg J, Hnaien F, Labadie N
    • Borodin V, Bourtembourg J, Hnaien F, Labadie N (2015) Predictive modelling with panel data and multivariate adaptive regression splines: case of farmers crop delivery for a harvest season ahead. Stoch Environ Res Risk Assess 1–17. doi:10.1007/s00477-015-1093-6
    • (2015) Stoch Environ Res Risk Assess 1–17
  • 15
    • 77955282973 scopus 로고    scopus 로고
    • Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water
    • COI: 1:CAS:528:DC%2BC3cXpslyju7c%3D
    • Butte NF, Wong WW, Adolph AL, Puyau MR, Vohra FA, Zakeri IF (2010) Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water. J Nutrition 140:1516–1523
    • (2010) J Nutrition , vol.140 , pp. 1516-1523
    • Butte, N.F.1    Wong, W.W.2    Adolph, A.L.3    Puyau, M.R.4    Vohra, F.A.5    Zakeri, I.F.6
  • 16
    • 0032031173 scopus 로고    scopus 로고
    • A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data I. Model description and comparison with observations
    • Choudhury BJ, DiGirolamo NE (1998) A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data I. Model description and comparison with observations. J Hydrol 205:164–185
    • (1998) J Hydrol , vol.205 , pp. 164-185
    • Choudhury, B.J.1    DiGirolamo, N.E.2
  • 17
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven P, Wahba G (1978) Smoothing noisy data with spline functions. Numer Math 31:377–403
    • (1978) Numer Math , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 18
    • 2342623875 scopus 로고
    • Multicollinearity: a tale of two nonparametric regressions
    • Cheeseman P, Oldford RW, (eds), Springer, New York
    • De Veaux RD, Ungar LH (1994) Multicollinearity: a tale of two nonparametric regressions. In: Cheeseman P, Oldford RW (eds) Selecting models from data. Springer, New York, pp 393–402
    • (1994) Selecting models from data , pp. 393-402
    • De Veaux, R.D.1    Ungar, L.H.2
  • 19
    • 84928136722 scopus 로고    scopus 로고
    • Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia
    • Deo RC, Şahin M (2015a) Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmos Res 161–162:65–81
    • (2015) Atmos Res , vol.161-162 , pp. 65-81
    • Deo, R.C.1    Şahin, M.2
  • 20
    • 84908611342 scopus 로고    scopus 로고
    • Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia
    • Deo RC, Şahin M (2015b) Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos Res 153:512–525. doi:10.1016/j.atmosres.2013.11.002
    • (2015) Atmos Res , vol.153 , pp. 512-525
    • Deo, R.C.1    Şahin, M.2
  • 21
    • 67449138340 scopus 로고    scopus 로고
    • Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia
    • Deo RC, Syktus J, McAlpine C, Lawrence P, McGowan H, Phinn SR (2009) Impact of historical land cover change on daily indices of climate extremes including droughts in eastern Australia. Geophys Res Lett 36
    • (2009) Geophys Res Lett , pp. 36
    • Deo, R.C.1    Syktus, J.2    McAlpine, C.3    Lawrence, P.4    McGowan, H.5    Phinn, S.R.6
  • 23
    • 84880082142 scopus 로고    scopus 로고
    • Multi-lead ahead prediction model of reference evapotranspiration utilizing ANN with ensemble procedure
    • El-Shafie A, Alsulami HM, Jahanbani H, Najah A (2013) Multi-lead ahead prediction model of reference evapotranspiration utilizing ANN with ensemble procedure. Stoch Env Res Risk Assess 27:1423–1440
    • (2013) Stoch Env Res Risk Assess , vol.27 , pp. 1423-1440
    • El-Shafie, A.1    Alsulami, H.M.2    Jahanbani, H.3    Najah, A.4
  • 24
    • 67649515826 scopus 로고    scopus 로고
    • Estimation of monthly pan evaporation using artificial neural networks and support vector machines
    • COI: 1:CAS:528:DC%2BD1MXhtFSqsL4%3D
    • Eslamian S, Gohari S, Biabanaki M, Malekian R (2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. J Appl Sci 8:3497–3502
    • (2008) J Appl Sci , vol.8 , pp. 3497-3502
    • Eslamian, S.1    Gohari, S.2    Biabanaki, M.3    Malekian, R.4
  • 25
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67
    • (1991) Ann Stat , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 27
    • 84888201161 scopus 로고    scopus 로고
    • An evolutionary approach for modeling of shear strength of RC deep beams
    • Gandomi AH, Yun GJ, Alavi AH (2013) An evolutionary approach for modeling of shear strength of RC deep beams. Mater Struct 46:2109–2119
    • (2013) Mater Struct , vol.46 , pp. 2109-2119
    • Gandomi, A.H.1    Yun, G.J.2    Alavi, A.H.3
  • 28
    • 84955516345 scopus 로고    scopus 로고
    • Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique
    • Gandomi M, Soltanpour M, Zolfaghari MR, Gandomi AH (2014) Prediction of peak ground acceleration of Iran’s tectonic regions using a hybrid soft computing technique. Geosci Front
    • (2014) Geosci Front
    • Gandomi, M.1    Soltanpour, M.2    Zolfaghari, M.R.3    Gandomi, A.H.4
  • 29
    • 84898464831 scopus 로고    scopus 로고
    • Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
    • Goyal MK, Bharti B, Quilty J, Adamowski J, Pandey A (2014) Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Syst Appl 41:5267–5276
    • (2014) Expert Syst Appl , vol.41 , pp. 5267-5276
    • Goyal, M.K.1    Bharti, B.2    Quilty, J.3    Adamowski, J.4    Pandey, A.5
  • 32
    • 0037361264 scopus 로고    scopus 로고
    • Learning capability and storage capacity of two-hidden-layer feedforward networks
    • Huang G-B (2003) Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans Neural Netw 14:274–281
    • (2003) IEEE Trans Neural Netw , vol.14 , pp. 274-281
    • Huang, G.-B.1
  • 33
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 34
    • 0034787335 scopus 로고    scopus 로고
    • Using spatial interpolation to construct a comprehensive archive of Australian climate data
    • Jeffrey SJ, Carter JO, Moodie KB, Beswick AR (2001) Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ Model Softw 16:309–330
    • (2001) Environ Model Softw , vol.16 , pp. 309-330
    • Jeffrey, S.J.1    Carter, J.O.2    Moodie, K.B.3    Beswick, A.R.4
  • 36
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan MS, Coulibaly P (2006) Application of support vector machine in lake water level prediction. J Hydrol Eng 11:199–205
    • (2006) J Hydrol Eng , vol.11 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 37
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modelling using a neuro-fuzzy computing technique
    • Kişi Ö (2006) Daily pan evaporation modelling using a neuro-fuzzy computing technique. J Hydrol 329:636–646
    • (2006) J Hydrol , vol.329 , pp. 636-646
    • Kişi, Ö.1
  • 38
    • 0036640616 scopus 로고    scopus 로고
    • Neural networks for profiling stress history of clays from PCPT data
    • Kurup PU, Dudani NK (2002) Neural networks for profiling stress history of clays from PCPT data. J Geotech Geoenviron Eng 128:569–579
    • (2002) J Geotech Geoenviron Eng , vol.128 , pp. 569-579
    • Kurup, P.U.1    Dudani, N.K.2
  • 39
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks
    • MacKay DJ (1995) Probable networks and plausible predictions-a review of practical Bayesian methods for supervised neural networks. Network Comput Neural Syst 6:469–505
    • (1995) Network Comput Neural Syst , vol.6 , pp. 469-505
    • MacKay, D.J.1
  • 40
    • 68549135292 scopus 로고    scopus 로고
    • A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia’s climate
    • McAlpine C, Syktus J, Ryan J, Deo R, McKeon G, McGowan H, Phinn S (2009) A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia’s climate. Glob Change Biol 15:2206–2223
    • (2009) Glob Change Biol , vol.15 , pp. 2206-2223
    • McAlpine, C.1    Syktus, J.2    Ryan, J.3    Deo, R.4    McKeon, G.5    McGowan, H.6    Phinn, S.7
  • 41
    • 70350199149 scopus 로고    scopus 로고
    • Effect of metrological parameters on evaporation in small reservoirs ‘Anand Sagar’Shegaon-a case study
    • Murthy S, Gawande S (2006) Effect of metrological parameters on evaporation in small reservoirs ‘Anand Sagar’Shegaon-a case study. J Prudushan Nirmulan 3:52–56
    • (2006) J Prudushan Nirmulan , vol.3 , pp. 52-56
    • Murthy, S.1    Gawande, S.2
  • 42
    • 0031334889 scopus 로고    scopus 로고
    • Girosi F (1997) An improved training algorithm for support vector machines
    • Proceedings of the: IEEE workshop
    • Osuna E, Freund R, Girosi F (1997) An improved training algorithm for support vector machines. In: Neural networks for signal processing (1997) VII. Proceedings of the 1997 IEEE workshop, pp 276–285
    • (1997) (1997) , vol.7 , pp. 276-285
    • Osuna, E.1    Freund, R.2
  • 43
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machines-based modelling of seismic liquefaction potential
    • Pal M (2006) Support vector machines-based modelling of seismic liquefaction potential. Int J Numer Anal Meth Geomech 30:983–996
    • (2006) Int J Numer Anal Meth Geomech , vol.30 , pp. 983-996
    • Pal, M.1
  • 44
    • 84880077238 scopus 로고    scopus 로고
    • Analysing trends in reference evapotranspiration and weather variables in the Tons River Basin in Central India
    • Pandey A, Pandey R (2013) Analysing trends in reference evapotranspiration and weather variables in the Tons River Basin in Central India. Stoch Env Res Risk Assess 27:1407–1421
    • (2013) Stoch Env Res Risk Assess , vol.27 , pp. 1407-1421
    • Pandey, A.1    Pandey, R.2
  • 45
    • 0032623401 scopus 로고    scopus 로고
    • Forecasting freeway link travel times with a multilayer feedforward neural network
    • Park D, Rilett LR (1999) Forecasting freeway link travel times with a multilayer feedforward neural network. Comput-Aid Civil Infrastruct Eng 14:357–367
    • (1999) Comput-Aid Civil Infrastruct Eng , vol.14 , pp. 357-367
    • Park, D.1    Rilett, L.R.2
  • 46
    • 84930543077 scopus 로고    scopus 로고
    • Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data
    • Partal T, Cigizoglu HK, Kahya E (2015) Daily precipitation predictions using three different wavelet neural network algorithms by meteorological data. Stoch Env Res Risk Assess 29:1317–1329
    • (2015) Stoch Env Res Risk Assess , vol.29 , pp. 1317-1329
    • Partal, T.1    Cigizoglu, H.K.2    Kahya, E.3
  • 48
    • 84868252729 scopus 로고    scopus 로고
    • Extreme learning machines-a review and state-of-the-art
    • Rajesh R, Prakash JS (2011) Extreme learning machines-a review and state-of-the-art. Int J Wisdom Based Comput 1:35–49
    • (2011) Int J Wisdom Based Comput , vol.1 , pp. 35-49
    • Rajesh, R.1    Prakash, J.S.2
  • 49
    • 0029413038 scopus 로고
    • Multivariate modelling of water resources time series using artificial neural networks
    • Raman H, Sunilkumar N (1995) Multivariate modelling of water resources time series using artificial neural networks. Hydrol Sci J 40:145–163
    • (1995) Hydrol Sci J , vol.40 , pp. 145-163
    • Raman, H.1    Sunilkumar, N.2
  • 50
    • 9444250658 scopus 로고    scopus 로고
    • Advances in learning theory: methods, models and applications
    • Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J, (eds), 190, IOS Press, Amsterdam
    • Rifkin R, Yeo G, Poggio T (2003) Advances in learning theory: methods, models and applications. In: Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (eds) NATO science series III: computer and systems sciences, vol 190. IOS Press, Amsterdam
    • (2003) NATO science series III: computer and systems sciences
    • Rifkin, R.1    Yeo, G.2    Poggio, T.3
  • 51
    • 84864764050 scopus 로고    scopus 로고
    • Modelling of air temperature using remote sensing and artificial neural network in Turkey
    • Şahin M (2012) Modelling of air temperature using remote sensing and artificial neural network in Turkey. Adv Space Res 50:973–985
    • (2012) Adv Space Res , vol.50 , pp. 973-985
    • Şahin, M.1
  • 52
    • 84873411994 scopus 로고    scopus 로고
    • Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data
    • Şahin M, Kaya Y, Uyar M (2013) Comparison of ANN and MLR models for estimating solar radiation in Turkey using NOAA/AVHRR data. Adv Space Res 51:891–904
    • (2013) Adv Space Res , vol.51 , pp. 891-904
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3
  • 53
    • 84892552548 scopus 로고    scopus 로고
    • Application of extreme learning machine for estimating solar radiation from satellite data
    • Şahin M, Kaya Y, Uyar M, Yıldırım S (2014) Application of extreme learning machine for estimating solar radiation from satellite data. Int J Energy Res 38:205–212
    • (2014) Int J Energy Res , vol.38 , pp. 205-212
    • Şahin, M.1    Kaya, Y.2    Uyar, M.3    Yıldırım, S.4
  • 54
    • 84929103480 scopus 로고    scopus 로고
    • Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms
    • Salcedo-Sanz S, Deo RC, Carro-Calvo L, Saavedra-Moreno B (2015) Monthly prediction of air temperature in Australia and New Zealand with machine learning algorithms. Theor Appl Climatol. doi:10.1007/s00704-00015-01480-0070410.1007/s00704-015-1480-4
    • (2015) Theor Appl Climatol
    • Salcedo-Sanz, S.1    Deo, R.C.2    Carro-Calvo, L.3    Saavedra-Moreno, B.4
  • 55
    • 84882773209 scopus 로고    scopus 로고
    • Slope stability analysis using multivariate adaptive regression spline
    • Samui P (2012) Slope stability analysis using multivariate adaptive regression spline. Metaheuristics Water Geotech Transp Eng 14:327
    • (2012) Metaheuristics Water Geotech Transp Eng , vol.14 , pp. 327
    • Samui, P.1
  • 56
    • 84859634066 scopus 로고    scopus 로고
    • Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs
    • Samui P, Dixon B (2012) Application of support vector machine and relevance vector machine to determine evaporative losses in reservoirs. Hydrol Process 26:1361–1369
    • (2012) Hydrol Process , vol.26 , pp. 1361-1369
    • Samui, P.1    Dixon, B.2
  • 57
    • 0039595510 scopus 로고    scopus 로고
    • Forecasting recessions: Can we do better on mars
    • Sephton P (2001) Forecasting recessions: Can we do better on mars. Fed Reserve Bank St Louis Rev 83:39–49
    • (2001) Fed Reserve Bank St Louis Rev , vol.83 , pp. 39-49
    • Sephton, P.1
  • 58
    • 28544450051 scopus 로고    scopus 로고
    • Predicting box-office success of motion pictures with neural networks
    • Sharda R, Delen D (2006) Predicting box-office success of motion pictures with neural networks. Expert Syst Appl 30:243–254
    • (2006) Expert Syst Appl , vol.30 , pp. 243-254
    • Sharda, R.1    Delen, D.2
  • 59
    • 57049158173 scopus 로고    scopus 로고
    • Performance of Multivariate Adaptive Regression Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d’écoulement au sein de micro-bassins versants Himalayens d’altitudes intermédiaires avec peu de données
    • Sharda V, Prasher S, Patel R, Ojasvi P, Prakash C (2008) Performance of Multivariate Adaptive Regression Splines (MARS) in predicting runoff in mid-Himalayan micro-watersheds with limited data/Performances de régressions par splines multiples et adaptives (MARS) pour la prévision d’écoulement au sein de micro-bassins versants Himalayens d’altitudes intermédiaires avec peu de données. Hydrol Sci J 53:1165–1175
    • (2008) Hydrol Sci J , vol.53 , pp. 1165-1175
    • Sharda, V.1    Prasher, S.2    Patel, R.3    Ojasvi, P.4    Prakash, C.5
  • 60
    • 27744590254 scopus 로고    scopus 로고
    • Discharge rating curve extension—a new approach
    • Sivapragasam C, Muttil N (2005) Discharge rating curve extension—a new approach. Water Resour Manag 19:505–520
    • (2005) Water Resour Manag , vol.19 , pp. 505-520
    • Sivapragasam, C.1    Muttil, N.2
  • 61
    • 0016984994 scopus 로고
    • A simple method for determining the evaporation from shallow lakes and ponds
    • Stewart RB, Rouse WR (1976) A simple method for determining the evaporation from shallow lakes and ponds. Water Resour Res 12:623–628
    • (1976) Water Resour Res , vol.12 , pp. 623-628
    • Stewart, R.B.1    Rouse, W.R.2
  • 62
    • 84978216060 scopus 로고    scopus 로고
    • Development and validation of PCR-GLOBWB 2.0: a 5 arc min resolution global hydrology and water resources model. In: EGU general assembly conference abstracts
    • Sutanudjaja EH, van Beek LP, Wada Y, Wisser D, de Graaf IE, Straatsma MW, Bierkens MF (2014) Development and validation of PCR-GLOBWB 2.0: a 5 arc min resolution global hydrology and water resources model. In: EGU general assembly conference abstracts, p 9993
    • (2014) p 9993
    • Sutanudjaja, E.H.1    van Beek, L.P.2    Wada, Y.3    Wisser, D.4    de Graaf, I.E.5    Straatsma, M.W.6    Bierkens, M.F.7
  • 63
    • 77953692036 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression
    • Tabari H, Marofi S, Sabziparvar A-A (2010) Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrig Sci 28:399–406
    • (2010) Irrig Sci , vol.28 , pp. 399-406
    • Tabari, H.1    Marofi, S.2    Sabziparvar, A.-A.3
  • 64
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: four layers versus three
    • COI: 1:STN:280:DC%2BD1c%2FpvVaksQ%3D%3D
    • Tamura S, Tateishi M (1997) Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans Neural Netw 8:251–255
    • (1997) IEEE Trans Neural Netw , vol.8 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 65
    • 62749137442 scopus 로고    scopus 로고
    • A regional perspective on trends in continental evaporation
    • Teuling A et al (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett 36:L02404
    • (2009) Geophys Res Lett , vol.36 , pp. L02404
    • Teuling, A.1
  • 66
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244
    • (2001) J Mach Learn Res , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 67
    • 84885070735 scopus 로고    scopus 로고
    • Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models
    • Tiwari MK, Adamowski J (2013) Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models. Water Resour Res 49:6486–6507
    • (2013) Water Resour Res , vol.49 , pp. 6486-6507
    • Tiwari, M.K.1    Adamowski, J.2
  • 68
    • 34648820349 scopus 로고    scopus 로고
    • On selection of kernel parametes in relevance vector machines for hydrologic applications
    • Tripathi S, Govindaraju RS (2007) On selection of kernel parametes in relevance vector machines for hydrologic applications. Stoch Env Res Risk Assess 21:747–764
    • (2007) Stoch Env Res Risk Assess , vol.21 , pp. 747-764
    • Tripathi, S.1    Govindaraju, R.S.2
  • 70
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem
    • Wahba G (1985) A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problem. Ann Stat 13:1378–1402
    • (1985) Ann Stat , vol.13 , pp. 1378-1402
    • Wahba, G.1
  • 71
    • 77958035437 scopus 로고    scopus 로고
    • Data-driven models for monthly streamflow time series prediction
    • Wu C, Chau K (2010) Data-driven models for monthly streamflow time series prediction. Eng Appl Artif Intell 23:1350–1367
    • (2010) Eng Appl Artif Intell , vol.23 , pp. 1350-1367
    • Wu, C.1    Chau, K.2
  • 72
    • 0002548939 scopus 로고    scopus 로고
    • Non-stationary time series analysis and forecasting
    • Young PC (1999) Non-stationary time series analysis and forecasting. Prog Environ Sci 1:3–48
    • (1999) Prog Environ Sci , vol.1 , pp. 3-48
    • Young, P.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.