-
1
-
-
0026836829
-
Neural network approach to the determination of aquifer parameters
-
Aziz ARA, Wong KFV (1992) Neural network approach to the determination of aquifer parameters. Ground Water 30(2):164–166
-
(1992)
Ground Water
, vol.30
, Issue.2
, pp. 164-166
-
-
Aziz, A.R.A.1
Wong, K.F.V.2
-
2
-
-
0037199710
-
Aquifer parameters determination for large diameter wells using neural network approach
-
Balkhair KS (2002) Aquifer parameters determination for large diameter wells using neural network approach. J Hydrol 265(1):118–128
-
(2002)
J Hydrol
, vol.265
, Issue.1
, pp. 118-128
-
-
Balkhair, K.S.1
-
3
-
-
79551472362
-
Artificial neural network model as a potential alternative for groundwater salinity forecasting
-
Banerjee P, Singh VS, Chattopadhyay K, Chandra PC, Singh B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol 398(3–4):212–220
-
(2011)
J Hydrol
, vol.398
, Issue.3-4
, pp. 212-220
-
-
Banerjee, P.1
Singh, V.S.2
Chattopadhyay, K.3
Chandra, P.C.4
Singh, B.5
-
4
-
-
84881097497
-
Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling
-
Chang F, Chen P, Liu C, Liao VH, Liao C (2013) Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. J Hydrol 499:265–274
-
(2013)
J Hydrol
, vol.499
, pp. 265-274
-
-
Chang, F.1
Chen, P.2
Liu, C.3
Liao, V.H.4
Liao, C.5
-
5
-
-
0344984214
-
Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions
-
Coppola E, Szidarovszky F, Poulton M, Charles E (2003) Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions. J Hydrol Eng ASCE 8(6):348–360
-
(2003)
J Hydrol Eng ASCE
, vol.8
, Issue.6
, pp. 348-360
-
-
Coppola, E.1
Szidarovszky, F.2
Poulton, M.3
Charles, E.4
-
6
-
-
15944365544
-
A neural network model for predicting aquifer water level elevations
-
Coppola EA, Rana AJ, Poulton MM, Szidarovszky F, Uhl VW (2005) A neural network model for predicting aquifer water level elevations. Ground Water 43(2):231–241
-
(2005)
Ground Water
, vol.43
, Issue.2
, pp. 231-241
-
-
Coppola, E.A.1
Rana, A.J.2
Poulton, M.M.3
Szidarovszky, F.4
Uhl, V.W.5
-
7
-
-
0034993945
-
Artificial neural network modeling of water table depth fluctuations
-
Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896
-
(2001)
Water Resour Res
, vol.37
, Issue.4
, pp. 885-896
-
-
Coulibaly, P.1
Anctil, F.2
Aravena, R.3
Bobee, B.4
-
8
-
-
20344369583
-
Groundwater level forecasting using artificial neural network
-
Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural network. J Hydrol 309:229–240
-
(2005)
J Hydrol
, vol.309
, pp. 229-240
-
-
Daliakopoulos, I.N.1
Coulibaly, P.2
Tsanis, I.K.3
-
9
-
-
84918515939
-
Prediction the groundwater level of Bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)
-
Emamgholizadeh S, Moslemi K, Karami G (2014) Prediction the groundwater level of Bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resour Manag 28:5433–5446
-
(2014)
Water Resour Manag
, vol.28
, pp. 5433-5446
-
-
Emamgholizadeh, S.1
Moslemi, K.2
Karami, G.3
-
10
-
-
31044452344
-
Using neural networks for parameter estimation in ground water
-
Garcia LA, Shigdi A (2006) Using neural networks for parameter estimation in ground water. J Hydrol 318(1–4):215–231
-
(2006)
J Hydrol
, vol.318
, Issue.1-4
, pp. 215-231
-
-
Garcia, L.A.1
Shigdi, A.2
-
11
-
-
78149414476
-
Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks
-
Ghose DK, Panda SN, Swain PC (2010) Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. J Hydrol 394:296–304
-
(2010)
J Hydrol
, vol.394
, pp. 296-304
-
-
Ghose, D.K.1
Panda, S.N.2
Swain, P.C.3
-
14
-
-
84918516098
-
Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions
-
He Z, Zhang Y, Guo Q, Zhao X (2014) Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions. Water Resour Manag 28:5297–5317
-
(2014)
Water Resour Manag
, vol.28
, pp. 5297-5317
-
-
He, Z.1
Zhang, Y.2
Guo, Q.3
Zhao, X.4
-
15
-
-
0035166902
-
Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network
-
Hong YS, Rosen MR (2001) Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network. Urban Water 3(3):193–204
-
(2001)
Urban Water
, vol.3
, Issue.3
, pp. 193-204
-
-
Hong, Y.S.1
Rosen, M.R.2
-
16
-
-
48449101338
-
Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
-
Karahan H, Ayvaz MT (2008) Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks. Hydrogeol J 16:817–827
-
(2008)
Hydrogeol J
, vol.16
, pp. 817-827
-
-
Karahan, H.1
Ayvaz, M.T.2
-
17
-
-
42149163573
-
Modeling groundwater levels in an urban coastal aquifer using artificial neural networks
-
Krishna B, Rao YRS, Vijaya T (2008) Modeling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrol Process 22:1180–1188
-
(2008)
Hydrol Process
, vol.22
, pp. 1180-1188
-
-
Krishna, B.1
Rao, Y.R.S.2
Vijaya, T.3
-
18
-
-
0344066275
-
Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
-
Kuo V, Liu C, Lin K (2004) Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res 38(1):148–158
-
(2004)
Water Res
, vol.38
, Issue.1
, pp. 148-158
-
-
Kuo, V.1
Liu, C.2
Lin, K.3
-
19
-
-
0032034197
-
Understanding the behavior and optimizing the performance of backpropagation neural networks: an empirical study
-
Maier HR, Dandy GC (1998) Understanding the behavior and optimizing the performance of backpropagation neural networks: an empirical study. Environ Model Softw 13:179–191
-
(1998)
Environ Model Softw
, vol.13
, pp. 179-191
-
-
Maier, H.R.1
Dandy, G.C.2
-
20
-
-
0033957764
-
Neural networks for prediction and forecasting of water resources variables: a review of modeling issue and application
-
Maier HR, Dandy GC (2000) Neural networks for prediction and forecasting of water resources variables: a review of modeling issue and application. Environ Model Softw 15:101–124
-
(2000)
Environ Model Softw
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
21
-
-
0036719180
-
Contribution of neural networks for modeling trihalomethanes occurrence in drinking water
-
Milot J, Rodriguez MJ, Serodes JB (2002) Contribution of neural networks for modeling trihalomethanes occurrence in drinking water. J Water Resour Plan Manag ASCE 128(5):370–376
-
(2002)
J Water Resour Plan Manag ASCE
, vol.128
, Issue.5
, pp. 370-376
-
-
Milot, J.1
Rodriguez, M.J.2
Serodes, J.B.3
-
22
-
-
77953325250
-
Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
-
Mohanty S, Jha MK, Kumar A, Sudheer KP (2010) Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resour Manag 24:1845–1865
-
(2010)
Water Resour Manag
, vol.24
, pp. 1845-1865
-
-
Mohanty, S.1
Jha, M.K.2
Kumar, A.3
Sudheer, K.P.4
-
23
-
-
0031968002
-
Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
-
Morshed J, Kaluarachchi JJ (1998) Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery. Water Resour Res 34(5):1101–1113
-
(1998)
Water Resour Res
, vol.34
, Issue.5
, pp. 1101-1113
-
-
Morshed, J.1
Kaluarachchi, J.J.2
-
24
-
-
32044458602
-
Groundwater level forecasting in a shallow aquifer using artificial neural network approach
-
Nayak PC, Rao YRS, Sudheer KP (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 20:77–90
-
(2006)
Water Resour Manag
, vol.20
, pp. 77-90
-
-
Nayak, P.C.1
Rao, Y.R.S.2
Sudheer, K.P.3
-
25
-
-
84892850544
-
Groundwater level prediction using multiple linear regression and artificial neural network techniques
-
Sahoo S, Jha MK (2013) Groundwater level prediction using multiple linear regression and artificial neural network techniques. Hydrogeol J 21(8):1865–1887
-
(2013)
Hydrogeol J
, vol.21
, Issue.8
, pp. 1865-1887
-
-
Sahoo, S.1
Jha, M.K.2
-
26
-
-
34249898039
-
A simple neural network model for the determination of aquifer parameters
-
Samani M, Gohari-Moghadam M, Safavi AA (2007) A simple neural network model for the determination of aquifer parameters. J Hydrol 340:1–11
-
(2007)
J Hydrol
, vol.340
, pp. 1-11
-
-
Samani, M.1
Gohari-Moghadam, M.2
Safavi, A.A.3
-
27
-
-
16444367031
-
Parameter estimation in groundwater hydrology using artificial neural networks
-
Shigdi A, Garcia LA (2003) Parameter estimation in groundwater hydrology using artificial neural networks. J Comput Civ Eng ASCE 17(4):281–289
-
(2003)
J Comput Civ Eng ASCE
, vol.17
, Issue.4
, pp. 281-289
-
-
Shigdi, A.1
Garcia, L.A.2
-
28
-
-
84868367414
-
Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
-
Taormina R, Chau K, Sethi R (2012) Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng Appl Artif Intell 25(8):1670–1676
-
(2012)
Eng Appl Artif Intell
, vol.25
, Issue.8
, pp. 1670-1676
-
-
Taormina, R.1
Chau, K.2
Sethi, R.3
-
29
-
-
0034174280
-
Artificial neural networks in hydrology- I: preliminary concepts
-
ASCE Task Committee (2000a) Artificial neural networks in hydrology- I: preliminary concepts. J Hydrol Eng ASCE 5(2):115–123
-
(2000)
J Hydrol Eng ASCE
, vol.5
, Issue.2
, pp. 115-123
-
-
-
30
-
-
0034174396
-
Artificial neural networks in hydrology- II: hydrologic applications
-
ASCE Task Committee (2000b) Artificial neural networks in hydrology- II: hydrologic applications. J Hydrol Eng ASCE 5(2):124–137
-
(2000)
J Hydrol Eng ASCE
, vol.5
, Issue.2
, pp. 124-137
-
-
-
31
-
-
33846095406
-
Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas
-
Uddameri V (2007) Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas. Environ Geol 51:885–895
-
(2007)
Environ Geol
, vol.51
, pp. 885-895
-
-
Uddameri, V.1
-
32
-
-
84901626266
-
Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well log data
-
Viveros UI, Parra JO (2014) Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well log data. J Appl Geophys 107:45–54
-
(2014)
J Appl Geophys
, vol.107
, pp. 45-54
-
-
Viveros, U.I.1
Parra, J.O.2
-
33
-
-
78650179085
-
A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
-
Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138
-
(2011)
J Hydrol
, vol.396
, pp. 128-138
-
-
Yoon, H.1
Jun, S.C.2
Hyun, Y.3
Bae, G.O.4
Lee, K.K.5
|