메뉴 건너뛰기




Volumn 29, Issue 15, 2015, Pages 5521-5532

Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites

Author keywords

Alluvial aquifer system; Backpropagation GDX algorithm; Groundwater level forecasting; Neural network modeling

Indexed keywords

AQUIFERS; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; FORECASTING; GROUNDWATER; NEURAL NETWORKS; WATER LEVELS; WATER MANAGEMENT;

EID: 84944683850     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-015-1132-6     Document Type: Article
Times cited : (112)

References (33)
  • 1
    • 0026836829 scopus 로고
    • Neural network approach to the determination of aquifer parameters
    • Aziz ARA, Wong KFV (1992) Neural network approach to the determination of aquifer parameters. Ground Water 30(2):164–166
    • (1992) Ground Water , vol.30 , Issue.2 , pp. 164-166
    • Aziz, A.R.A.1    Wong, K.F.V.2
  • 2
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach
    • Balkhair KS (2002) Aquifer parameters determination for large diameter wells using neural network approach. J Hydrol 265(1):118–128
    • (2002) J Hydrol , vol.265 , Issue.1 , pp. 118-128
    • Balkhair, K.S.1
  • 3
    • 79551472362 scopus 로고    scopus 로고
    • Artificial neural network model as a potential alternative for groundwater salinity forecasting
    • Banerjee P, Singh VS, Chattopadhyay K, Chandra PC, Singh B (2011) Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol 398(3–4):212–220
    • (2011) J Hydrol , vol.398 , Issue.3-4 , pp. 212-220
    • Banerjee, P.1    Singh, V.S.2    Chattopadhyay, K.3    Chandra, P.C.4    Singh, B.5
  • 4
    • 84881097497 scopus 로고    scopus 로고
    • Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling
    • Chang F, Chen P, Liu C, Liao VH, Liao C (2013) Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. J Hydrol 499:265–274
    • (2013) J Hydrol , vol.499 , pp. 265-274
    • Chang, F.1    Chen, P.2    Liu, C.3    Liao, V.H.4    Liao, C.5
  • 5
    • 0344984214 scopus 로고    scopus 로고
    • Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions
    • Coppola E, Szidarovszky F, Poulton M, Charles E (2003) Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions. J Hydrol Eng ASCE 8(6):348–360
    • (2003) J Hydrol Eng ASCE , vol.8 , Issue.6 , pp. 348-360
    • Coppola, E.1    Szidarovszky, F.2    Poulton, M.3    Charles, E.4
  • 7
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896
    • (2001) Water Resour Res , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 8
    • 20344369583 scopus 로고    scopus 로고
    • Groundwater level forecasting using artificial neural network
    • Daliakopoulos IN, Coulibaly P, Tsanis IK (2005) Groundwater level forecasting using artificial neural network. J Hydrol 309:229–240
    • (2005) J Hydrol , vol.309 , pp. 229-240
    • Daliakopoulos, I.N.1    Coulibaly, P.2    Tsanis, I.K.3
  • 9
    • 84918515939 scopus 로고    scopus 로고
    • Prediction the groundwater level of Bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)
    • Emamgholizadeh S, Moslemi K, Karami G (2014) Prediction the groundwater level of Bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resour Manag 28:5433–5446
    • (2014) Water Resour Manag , vol.28 , pp. 5433-5446
    • Emamgholizadeh, S.1    Moslemi, K.2    Karami, G.3
  • 10
    • 31044452344 scopus 로고    scopus 로고
    • Using neural networks for parameter estimation in ground water
    • Garcia LA, Shigdi A (2006) Using neural networks for parameter estimation in ground water. J Hydrol 318(1–4):215–231
    • (2006) J Hydrol , vol.318 , Issue.1-4 , pp. 215-231
    • Garcia, L.A.1    Shigdi, A.2
  • 11
    • 78149414476 scopus 로고    scopus 로고
    • Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks
    • Ghose DK, Panda SN, Swain PC (2010) Prediction of water table depth in western region, Orissa using BPNN and RBFN neural networks. J Hydrol 394:296–304
    • (2010) J Hydrol , vol.394 , pp. 296-304
    • Ghose, D.K.1    Panda, S.N.2    Swain, P.C.3
  • 14
    • 84918516098 scopus 로고    scopus 로고
    • Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions
    • He Z, Zhang Y, Guo Q, Zhao X (2014) Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions. Water Resour Manag 28:5297–5317
    • (2014) Water Resour Manag , vol.28 , pp. 5297-5317
    • He, Z.1    Zhang, Y.2    Guo, Q.3    Zhao, X.4
  • 15
    • 0035166902 scopus 로고    scopus 로고
    • Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network
    • Hong YS, Rosen MR (2001) Intelligent characterization and diagnosis of the groundwater quality in an urban fractured-rock aquifer using an artificial neural network. Urban Water 3(3):193–204
    • (2001) Urban Water , vol.3 , Issue.3 , pp. 193-204
    • Hong, Y.S.1    Rosen, M.R.2
  • 16
    • 48449101338 scopus 로고    scopus 로고
    • Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    • Karahan H, Ayvaz MT (2008) Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks. Hydrogeol J 16:817–827
    • (2008) Hydrogeol J , vol.16 , pp. 817-827
    • Karahan, H.1    Ayvaz, M.T.2
  • 17
    • 42149163573 scopus 로고    scopus 로고
    • Modeling groundwater levels in an urban coastal aquifer using artificial neural networks
    • Krishna B, Rao YRS, Vijaya T (2008) Modeling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrol Process 22:1180–1188
    • (2008) Hydrol Process , vol.22 , pp. 1180-1188
    • Krishna, B.1    Rao, Y.R.S.2    Vijaya, T.3
  • 18
    • 0344066275 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan
    • Kuo V, Liu C, Lin K (2004) Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Water Res 38(1):148–158
    • (2004) Water Res , vol.38 , Issue.1 , pp. 148-158
    • Kuo, V.1    Liu, C.2    Lin, K.3
  • 19
    • 0032034197 scopus 로고    scopus 로고
    • Understanding the behavior and optimizing the performance of backpropagation neural networks: an empirical study
    • Maier HR, Dandy GC (1998) Understanding the behavior and optimizing the performance of backpropagation neural networks: an empirical study. Environ Model Softw 13:179–191
    • (1998) Environ Model Softw , vol.13 , pp. 179-191
    • Maier, H.R.1    Dandy, G.C.2
  • 20
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for prediction and forecasting of water resources variables: a review of modeling issue and application
    • Maier HR, Dandy GC (2000) Neural networks for prediction and forecasting of water resources variables: a review of modeling issue and application. Environ Model Softw 15:101–124
    • (2000) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 21
    • 0036719180 scopus 로고    scopus 로고
    • Contribution of neural networks for modeling trihalomethanes occurrence in drinking water
    • Milot J, Rodriguez MJ, Serodes JB (2002) Contribution of neural networks for modeling trihalomethanes occurrence in drinking water. J Water Resour Plan Manag ASCE 128(5):370–376
    • (2002) J Water Resour Plan Manag ASCE , vol.128 , Issue.5 , pp. 370-376
    • Milot, J.1    Rodriguez, M.J.2    Serodes, J.B.3
  • 22
    • 77953325250 scopus 로고    scopus 로고
    • Artificial neural network modeling for groundwater level forecasting in a river island of eastern India
    • Mohanty S, Jha MK, Kumar A, Sudheer KP (2010) Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resour Manag 24:1845–1865
    • (2010) Water Resour Manag , vol.24 , pp. 1845-1865
    • Mohanty, S.1    Jha, M.K.2    Kumar, A.3    Sudheer, K.P.4
  • 23
    • 0031968002 scopus 로고    scopus 로고
    • Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
    • Morshed J, Kaluarachchi JJ (1998) Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery. Water Resour Res 34(5):1101–1113
    • (1998) Water Resour Res , vol.34 , Issue.5 , pp. 1101-1113
    • Morshed, J.1    Kaluarachchi, J.J.2
  • 24
    • 32044458602 scopus 로고    scopus 로고
    • Groundwater level forecasting in a shallow aquifer using artificial neural network approach
    • Nayak PC, Rao YRS, Sudheer KP (2006) Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resour Manag 20:77–90
    • (2006) Water Resour Manag , vol.20 , pp. 77-90
    • Nayak, P.C.1    Rao, Y.R.S.2    Sudheer, K.P.3
  • 25
    • 84892850544 scopus 로고    scopus 로고
    • Groundwater level prediction using multiple linear regression and artificial neural network techniques
    • Sahoo S, Jha MK (2013) Groundwater level prediction using multiple linear regression and artificial neural network techniques. Hydrogeol J 21(8):1865–1887
    • (2013) Hydrogeol J , vol.21 , Issue.8 , pp. 1865-1887
    • Sahoo, S.1    Jha, M.K.2
  • 26
    • 34249898039 scopus 로고    scopus 로고
    • A simple neural network model for the determination of aquifer parameters
    • Samani M, Gohari-Moghadam M, Safavi AA (2007) A simple neural network model for the determination of aquifer parameters. J Hydrol 340:1–11
    • (2007) J Hydrol , vol.340 , pp. 1-11
    • Samani, M.1    Gohari-Moghadam, M.2    Safavi, A.A.3
  • 27
    • 16444367031 scopus 로고    scopus 로고
    • Parameter estimation in groundwater hydrology using artificial neural networks
    • Shigdi A, Garcia LA (2003) Parameter estimation in groundwater hydrology using artificial neural networks. J Comput Civ Eng ASCE 17(4):281–289
    • (2003) J Comput Civ Eng ASCE , vol.17 , Issue.4 , pp. 281-289
    • Shigdi, A.1    Garcia, L.A.2
  • 28
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
    • Taormina R, Chau K, Sethi R (2012) Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng Appl Artif Intell 25(8):1670–1676
    • (2012) Eng Appl Artif Intell , vol.25 , Issue.8 , pp. 1670-1676
    • Taormina, R.1    Chau, K.2    Sethi, R.3
  • 29
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology- I: preliminary concepts
    • ASCE Task Committee (2000a) Artificial neural networks in hydrology- I: preliminary concepts. J Hydrol Eng ASCE 5(2):115–123
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 115-123
  • 30
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology- II: hydrologic applications
    • ASCE Task Committee (2000b) Artificial neural networks in hydrology- II: hydrologic applications. J Hydrol Eng ASCE 5(2):124–137
    • (2000) J Hydrol Eng ASCE , vol.5 , Issue.2 , pp. 124-137
  • 31
    • 33846095406 scopus 로고    scopus 로고
    • Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas
    • Uddameri V (2007) Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas. Environ Geol 51:885–895
    • (2007) Environ Geol , vol.51 , pp. 885-895
    • Uddameri, V.1
  • 32
    • 84901626266 scopus 로고    scopus 로고
    • Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well log data
    • Viveros UI, Parra JO (2014) Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well log data. J Appl Geophys 107:45–54
    • (2014) J Appl Geophys , vol.107 , pp. 45-54
    • Viveros, U.I.1    Parra, J.O.2
  • 33
    • 78650179085 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
    • Yoon H, Jun SC, Hyun Y, Bae GO, Lee KK (2011) A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J Hydrol 396:128–138
    • (2011) J Hydrol , vol.396 , pp. 128-138
    • Yoon, H.1    Jun, S.C.2    Hyun, Y.3    Bae, G.O.4    Lee, K.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.