메뉴 건너뛰기




Volumn 142, Issue 5, 2016, Pages

Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly Algorithm

Author keywords

Dew point temperature; Firefly algorithm; Hybrid model; Prediction; Support vector machine

Indexed keywords

ALGORITHMS; ATMOSPHERIC HUMIDITY; ATMOSPHERIC PRESSURE; ATMOSPHERIC TEMPERATURE; BIOLUMINESCENCE; FORECASTING; GENETIC ALGORITHMS; GENETIC PROGRAMMING; MEAN SQUARE ERROR; NEURAL NETWORKS; OPTIMIZATION;

EID: 84964727663     PISSN: 07339437     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)IR.1943-4774.0001015     Document Type: Article
Times cited : (27)

References (49)
  • 1
    • 33644624434 scopus 로고    scopus 로고
    • Dew formation and water vapor absorption in semi-arid environments-A review.
    • Agam, N., and Berliner, P. R. (2006). "Dew formation and water vapor absorption in semi-arid environments-A review." J. Arid. Environ., 65(4), 572-590.
    • (2006) J. Arid. Environ. , vol.65 , Issue.4 , pp. 572-590
    • Agam, N.1    Berliner, P.R.2
  • 2
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach.
    • Asefa, T., Kemblowski, M., McKee, M., and Khalil, A. (2006). "Multi-time scale stream flow predictions: The support vector machines approach." J Hydrol., 318(1-4), 7-16.
    • (2006) J Hydrol. , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 3
    • 0026836829 scopus 로고
    • Neural-network approach to the determination of aquifer parameters.
    • Aziz, A., and Wong, K. (1992). "Neural-network approach to the determination of aquifer parameters." Ground Water, 30(2), 164-166.
    • (1992) Ground Water , vol.30 , Issue.2 , pp. 164-166
    • Aziz, A.1    Wong, K.2
  • 4
    • 0036997582 scopus 로고    scopus 로고
    • Rainfall runoff modeling based on genetic programming.
    • Babovic, V., and Keijzer, M. (2000). "Rainfall runoff modeling based on genetic programming." Nordic Hydrol., 33, 331-346.
    • (2000) Nordic Hydrol. , vol.33 , pp. 331-346
    • Babovic, V.1    Keijzer, M.2
  • 5
    • 0037199710 scopus 로고    scopus 로고
    • Aquifer parameters determination for large diameter wells using neural network approach.
    • Balkhair, K. (2002). "Aquifer parameters determination for large diameter wells using neural network approach." J. Hydrol., 265(1-4), 118-128.
    • (2002) J. Hydrol. , vol.265 , Issue.1-4 , pp. 118-128
    • Balkhair, K.1
  • 6
    • 84878941786 scopus 로고    scopus 로고
    • A PSO and pattern search based memetic algorithm for SVMs parameters optimization.
    • Bao, Y. H. Z., and Xiong, T. (2013). "A PSO and pattern search based memetic algorithm for SVMs parameters optimization." Neurocomputing, 117, 98-106.
    • (2013) Neurocomputing , vol.117 , pp. 98-106
    • Bao, Y.H.Z.1    Xiong, T.2
  • 7
    • 84871989698 scopus 로고    scopus 로고
    • Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models.
    • Bilgili, M., Sahin, B., and Sangun, L. (2013). "Estimating soil temperature using neighboring station data via multi-nonlinear regression and artificial neural network models." Environ. Monit. Assess., 185(1), 347-358.
    • (2013) Environ. Monit. Assess. , vol.185 , Issue.1 , pp. 347-358
    • Bilgili, M.1    Sahin, B.2    Sangun, L.3
  • 8
    • 80055032683 scopus 로고    scopus 로고
    • A selfoptimizing mobile network: Auto-tuning the network with fireflysynchronized agents.
    • Bojic, I., Podobnik, V., Ljubi, I., Jezic, G., and Kusek, M. (2012). "A selfoptimizing mobile network: Auto-tuning the network with fireflysynchronized agents." Inf. Sci., 182(1), 77-92.
    • (2012) Inf. Sci. , vol.182 , Issue.1 , pp. 77-92
    • Bojic, I.1    Podobnik, V.2    Ljubi, I.3    Jezic, G.4    Kusek, M.5
  • 9
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines.
    • Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. S. (2002). "Choosing multiple parameters for support vector machines." Mach. Learn., 46(1-3), 131-159.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.S.4
  • 10
    • 33751206531 scopus 로고    scopus 로고
    • Reliability and performance-based design by artificial neural network.
    • Chau, K. (2007). "Reliability and performance-based design by artificial neural network." Adv. Eng. Software, 38(3), 145-149.
    • (2007) Adv. Eng. Software , vol.38 , Issue.3 , pp. 145-149
    • Chau, K.1
  • 11
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the RBF kernel.
    • Chung, K.-M., Kao, W.-C., Sun, C.-L., Wang, L.-l., and Lin, C.-J. (2003). "Radius margin bounds for support vector machines with the RBF kernel." Neural Comput., 15(11), 2643-2681.
    • (2003) Neural Comput. , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Wang, L.-l.4    Lin, C.-J.5
  • 12
    • 84890876888 scopus 로고    scopus 로고
    • Estimation of monthly mean reference evapotranspiration in Turkey.
    • Citakoglu, H., Cobaner, M., Haktanir, T., and Kisi, O. (2014). "Estimation of monthly mean reference evapotranspiration in Turkey." Water Resour. Manage., 28(1), 99-113.
    • (2014) Water Resour. Manage. , vol.28 , Issue.1 , pp. 99-113
    • Citakoglu, H.1    Cobaner, M.2    Haktanir, T.3    Kisi, O.4
  • 14
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters.
    • Friedrichs, F., and Igel, C. (2005). "Evolutionary tuning of multiple SVM parameters." Neurocomputing, 64, 107-117.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 15
    • 80055049702 scopus 로고    scopus 로고
    • Mixed variable structural optimization using Firefly Algorithm.
    • Gandomi, A. H., Yang, X. S., and Alavi, A. H. (2011). "Mixed variable structural optimization using Firefly Algorithm." Comput. Struct., 89(23-24), 2325-2336.
    • (2011) Comput. Struct. , vol.89 , Issue.23-24 , pp. 2325-2336
    • Gandomi, A.H.1    Yang, X.S.2    Alavi, A.H.3
  • 16
    • 67349229243 scopus 로고    scopus 로고
    • Supervised machine learning algorithms for protein structure classification.
    • Jain, P., Garibaldi, J. M., and Hirst, J. D. (2009). "Supervised machine learning algorithms for protein structure classification." Comput. Biol. Chem., 33(3), 216-223.
    • (2009) Comput. Biol. Chem. , vol.33 , Issue.3 , pp. 216-223
    • Jain, P.1    Garibaldi, J.M.2    Hirst, J.D.3
  • 17
    • 84868210863 scopus 로고    scopus 로고
    • Monthly precipitation forecasting with a neuro-fuzzy model.
    • Jeong, C., Shin, J. Y., Kim, T., and Heo, J. H. (2012). "Monthly precipitation forecasting with a neuro-fuzzy model." Water Resour. Manage., 26(15), 4467-4483.
    • (2012) Water Resour. Manage. , vol.26 , Issue.15 , pp. 4467-4483
    • Jeong, C.1    Shin, J.Y.2    Kim, T.3    Heo, J.H.4
  • 18
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines:Model and experiments.
    • Ji, Y., and Sun, S. (2013). "Multitask multiclass support vector machines:Model and experiments." Pattern Recogn., 46(3), 914-924.
    • (2013) Pattern Recogn. , vol.46 , Issue.3 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 19
    • 0342936331 scopus 로고    scopus 로고
    • Genetic programming and its application in real-time runoff forecasting.
    • Khu, S. T., Liong, S.-Y, Babovic, V., Madsen, H., and Muttil, N. (2001). "Genetic programming and its application in real-time runoff forecasting." J. Am. Water Resour. Assoc., 37(2), 439-451.
    • (2001) J. Am. Water Resour. Assoc. , vol.37 , Issue.2 , pp. 439-451
    • Khu, S.T.1    Liong, S.-Y.2    Babovic, V.3    Madsen, H.4    Muttil, N.5
  • 20
    • 84939264491 scopus 로고    scopus 로고
    • Modeling the physical dynamics of daily dew point temperature using soft computing techniques.
    • Kim, S., Singh, V. P., Lee, C. J., and Seo, Y. (2014). "Modeling the physical dynamics of daily dew point temperature using soft computing techniques." KSCE J. Civ. Eng., 19(6), 1930-1940.
    • (2014) KSCE J. Civ. Eng. , vol.19 , Issue.6 , pp. 1930-1940
    • Kim, S.1    Singh, V.P.2    Lee, C.J.3    Seo, Y.4
  • 21
    • 0030812880 scopus 로고    scopus 로고
    • An improved method for estimating surface humidity from daily minimum temperature.
    • Kimball, J. S., Running, S.W., and Nemani, R. (1997). "An improved method for estimating surface humidity from daily minimum temperature." Agric. For. Meteorol., 85(1-2), 87-98.
    • (1997) Agric. For. Meteorol. , vol.85 , Issue.1-2 , pp. 87-98
    • Kimball, J.S.1    Running, S.W.2    Nemani, R.3
  • 22
    • 84957940256 scopus 로고    scopus 로고
    • Prediction of long-term monthly precipitation using several soft computing methods without climatic data.
    • press.
    • Kisi, O., and Sanikhani, H. (2015). "Prediction of long-term monthly precipitation using several soft computing methods without climatic data." Int. J. Climatol., in press.
    • (2015) Int. J. Climatol.
    • Kisi, O.1    Sanikhani, H.2
  • 23
    • 84931568449 scopus 로고    scopus 로고
    • Modeling soil temperatures at different depths by using three different neural computing techniques.
    • Kisi, O., Tombul, M., and Zounemat-Kermani, M. (2015). "Modeling soil temperatures at different depths by using three different neural computing techniques." Theor. Appl. Climatol., 121(1), 377-387.
    • (2015) Theor. Appl. Climatol. , vol.121 , Issue.1 , pp. 377-387
    • Kisi, O.1    Tombul, M.2    Zounemat-Kermani, M.3
  • 24
    • 80053171957 scopus 로고    scopus 로고
    • A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey.
    • Kiran, M. S., Özceylan, E., Gündüz, M., and Paksoy, T. (2012). "A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey." Energy Convers. Manage., 53(1), 75-83.
    • (2012) Energy Convers. Manage. , vol.53 , Issue.1 , pp. 75-83
    • Kiran, M.S.1    Özceylan, E.2    Gündüz, M.3    Paksoy, T.4
  • 25
    • 33745866181 scopus 로고    scopus 로고
    • World map of the Koppen-Geiger climate classification updated.
    • Kottek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F. (2006). "World map of the Koppen-Geiger climate classification updated." Meteorol. Z, 15(3), 259-263.
    • (2006) Meteorol. Z , vol.15 , Issue.3 , pp. 259-263
    • Kottek, M.1    Grieser, J.2    Beck, C.3    Rudolf, B.4    Rubel, F.5
  • 28
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems.
    • Lorena, A. C., and De Carvalho, A. C. (2008). "Evolutionary tuning of SVM parameter values in multiclass problems." Neurocomputing, 71(16), 3326-3334.
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3326-3334
    • Lorena, A.C.1    De Carvalho, A.C.2
  • 29
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the
    • Lu, W. Z., and Wang, W. J. (2005). "Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends." Chemosphere, 59, 693-701.
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.Z.1    Wang, W.J.2
  • 30
    • 84893512847 scopus 로고    scopus 로고
    • Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecasts.
    • Luo, Y., et al. (2014). "Short-term forecasting of daily reference evapotranspiration using the Hargreaves-Samani model and temperature forecasts." Agric. Water Manage., 136, 42-51.
    • (2014) Agric. Water Manage. , vol.136 , pp. 42-51
    • Luo, Y.1
  • 31
    • 84954498069 scopus 로고    scopus 로고
    • Using ANFIS for selection of more relevant parameters to predict dew point temperature.
    • Mohammadi, K., Shamshirband, S., Petkovic, D., Yee, P. L., and Mansor, Z. (2016). "Using ANFIS for selection of more relevant parameters to predict dew point temperature." Appl. Therm. Eng., 96, 311-319.
    • (2016) Appl. Therm. Eng. , vol.96 , pp. 311-319
    • Mohammadi, K.1    Shamshirband, S.2    Petkovic, D.3    Yee, P.L.4    Mansor, Z.5
  • 32
    • 84882829483 scopus 로고    scopus 로고
    • Comparison of individual and combined ANN models for prediction of air and dewpoint temperature.
    • Nadig, K., Potter, W., Hoogenboom, G., and McClendon, R. (2013). "Comparison of individual and combined ANN models for prediction of air and dewpoint temperature." Appl. Intell., 39(2), 354-366.
    • (2013) Appl. Intell. , vol.39 , Issue.2 , pp. 354-366
    • Nadig, K.1    Potter, W.2    Hoogenboom, G.3    McClendon, R.4
  • 33
    • 84874837530 scopus 로고    scopus 로고
    • Continuous firefly algorithm applied to PWR core pattern enhancement.
    • Poursalehi, N., Zolfaghari, A., Minuchehr, A., and Moghaddam, H. K. (2013). "Continuous firefly algorithm applied to PWR core pattern enhancement." Nucl. Eng. Des., 258, 107-115.
    • (2013) Nucl. Eng. Des. , vol.258 , pp. 107-115
    • Poursalehi, N.1    Zolfaghari, A.2    Minuchehr, A.3    Moghaddam, H.K.4
  • 34
    • 54549091989 scopus 로고    scopus 로고
    • Support vector regression methodology for storm surge predictions.
    • Rajasekaran, S., Gayathri, S., and Lee, T.-L. (2008). "Support vector regression methodology for storm surge predictions." Ocean Eng., 35(16), 1578-1587.
    • (2008) Ocean Eng. , vol.35 , Issue.16 , pp. 1578-1587
    • Rajasekaran, S.1    Gayathri, S.2    Lee, T.-L.3
  • 36
    • 78649897490 scopus 로고    scopus 로고
    • Dewpoint temperature prediction using artificial neural networks.
    • M.S. thesis, Harding Univ., Searcy, AR
    • Shank, D. B. (2006). "Dewpoint temperature prediction using artificial neural networks." M.S. thesis, Harding Univ., Searcy, AR.
    • (2006)
    • Shank, D.B.1
  • 37
    • 48849113389 scopus 로고    scopus 로고
    • Dewpoint temperature prediction using artificial neural networks.
    • Shank, D. B., Hoogenboom, G., and McClendon, R.W. (2008). "Dewpoint temperature prediction using artificial neural networks." Appl. Meteorol. Climatol., 47(6), 1757-1769.
    • (2008) Appl. Meteorol. Climatol. , vol.47 , Issue.6 , pp. 1757-1769
    • Shank, D.B.1    Hoogenboom, G.2    McClendon, R.W.3
  • 38
    • 84899493198 scopus 로고    scopus 로고
    • Estimation of daily dewpoint temperature using genetic programming and neural networks approaches.
    • Shiri, J., Kim, S., and Kisi, O. (2014). "Estimation of daily dewpoint temperature using genetic programming and neural networks approaches." Hydrol. Res., 45(2), 165-181.
    • (2014) Hydrol. Res. , vol.45 , Issue.2 , pp. 165-181
    • Shiri, J.1    Kim, S.2    Kisi, O.3
  • 40
    • 84893812050 scopus 로고    scopus 로고
    • A support vector machine-firefly algorithm based forecasting model to determine malaria transmission.
    • Sudheer, Ch., et al. (2014). "A support vector machine-firefly algorithm based forecasting model to determine malaria transmission." Neurocomputing, 129, 279-288.
    • (2014) Neurocomputing , vol.129 , pp. 279-288
    • Sudheer, C.1
  • 41
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning.
    • Sun, S. (2013). "A survey of multi-view machine learning." Neural. Comput. Appl., 23(7-8), 2031-2038.
    • (2013) Neural. Comput. Appl. , vol.23 , Issue.7-8 , pp. 2031-2038
    • Sun, S.1
  • 42
    • 84936933519 scopus 로고    scopus 로고
    • Short-term forecasting of soil temperature using artificial neural network.
    • Tabari, H., Hosseinzadeh Talaee, P., and Willems, P. (2015). "Short-term forecasting of soil temperature using artificial neural network." Meteorol. Appl., 22(3), 576-585.
    • (2015) Meteorol. Appl. , vol.22 , Issue.3 , pp. 576-585
    • Tabari, H.1    Hosseinzadeh Talaee, P.2    Willems, P.3
  • 43
    • 84891640254 scopus 로고    scopus 로고
    • Daily soil temperature modeling using neuro-fuzzy approach.
    • Talaee, P. H. (2014). "Daily soil temperature modeling using neuro-fuzzy approach." Theor. Appl. Climatol., 118(3), 481-489.
    • (2014) Theor. Appl. Climatol. , vol.118 , Issue.3 , pp. 481-489
    • Talaee, P.H.1
  • 46
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space.
    • Wu, K.-P., Wang, S.-D. (2009). "Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space." Pattern Recogn., 42(5), 710-717.
    • (2009) Pattern Recogn. , vol.42 , Issue.5 , pp. 710-717
    • Wu, K.-P.1    Wang, S.-D.2
  • 47
    • 67349170327 scopus 로고    scopus 로고
    • Localized support vector regression for time series prediction.
    • Yang, H., Huang, K., King, I., and Lyu, M. R. (2009). "Localized support vector regression for time series prediction." Neurocomputing, 72(10), 2659-2669.
    • (2009) Neurocomputing , vol.72 , Issue.10 , pp. 2659-2669
    • Yang, H.1    Huang, K.2    King, I.3    Lyu, M.R.4
  • 48
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimization.
    • Yang, X. S. (2010). "Firefly algorithm, stochastic test functions and design optimization." Int. J. Bio-Inspired Comput., 2(2), 78-84.
    • (2010) Int. J. Bio-Inspired Comput. , vol.2 , Issue.2 , pp. 78-84
    • Yang, X.S.1
  • 49
    • 84865770172 scopus 로고    scopus 로고
    • Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dewpoint temperature.
    • Zounemat-Kermani, M. (2012). "Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dewpoint temperature." Meteorol. Atmos. Phys., 117(3-4), 181-192.
    • (2012) Meteorol. Atmos. Phys. , vol.117 , Issue.3-4 , pp. 181-192
    • Zounemat-Kermani, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.