메뉴 건너뛰기




Volumn 121, Issue , 2016, Pages 32-42

Application of artificial neural network for predicting hourly indoor air temperature and relative humidity in modern building in humid region

Author keywords

Artificial neural network; Building; Humid region; Indoor air temperature; Matlab; Relative humidity

Indexed keywords

AIR CONDITIONING; ATMOSPHERIC HUMIDITY; ATMOSPHERIC TEMPERATURE; BUILDINGS; ENERGY UTILIZATION; FORECASTING; HYPERBOLIC FUNCTIONS; MATLAB; STRUCTURAL OPTIMIZATION; THERMAL COMFORT;

EID: 84964054524     PISSN: 03787788     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enbuild.2016.03.046     Document Type: Article
Times cited : (169)

References (48)
  • 1
    • 0030868037 scopus 로고    scopus 로고
    • Effects of standard energy conserving measures on thermal comfort
    • R. Holz, A. Hourigan, R. Sloop, P. Monkman, and M. Krarti Effects of standard energy conserving measures on thermal comfort Build. Environ. 32 1 1997 31 43
    • (1997) Build. Environ. , vol.32 , Issue.1 , pp. 31-43
    • Holz, R.1    Hourigan, A.2    Sloop, R.3    Monkman, P.4    Krarti, M.5
  • 2
    • 0027242932 scopus 로고
    • Building energy performance and thermal comfort in Singapore
    • K.W. Tham, and M.B. Ullah Building energy performance and thermal comfort in Singapore ASHRAE Trans. 99 1 1993 308 321
    • (1993) ASHRAE Trans. , vol.99 , Issue.1 , pp. 308-321
    • Tham, K.W.1    Ullah, M.B.2
  • 3
    • 84857040178 scopus 로고    scopus 로고
    • Models for prediction of daily mean indoor temperature and relative humidity: Education building in Izmir, Turkey
    • Turkan Goksal Ozbalta, Alper Sezer, and Yusuf Yildiz Models for prediction of daily mean indoor temperature and relative humidity: education building in Izmir, Turkey Indoor Built Environ. 21 6 2012 772 781
    • (2012) Indoor Built Environ. , vol.21 , Issue.6 , pp. 772-781
    • Ozbalta, T.G.1    Sezer, A.2    Yildiz, Y.3
  • 4
    • 47649107696 scopus 로고    scopus 로고
    • Development and validation of regression models to predict monthly heating demand for residential buildings
    • T. Catalina, J. Virgone, and E. Blanco Development and validation of regression models to predict monthly heating demand for residential buildings Energy Build. 40 2008 1825 1832
    • (2008) Energy Build. , vol.40 , pp. 1825-1832
    • Catalina, T.1    Virgone, J.2    Blanco, E.3
  • 6
    • 84964065165 scopus 로고    scopus 로고
    • Barriers in developing and using simulation-based decision-support software
    • August 18-23, and published in the proceedings
    • Papamicheal Konstantinos, and Pal Vineeta Barriers in developing and using simulation-based decision-support software Presented at the ACEEE 2002 Summer Study on Energy Efficiency in Building August 18-23, and published in the proceedings 2002 5 p
    • (2002) ACEEE 2002 Summer Study on Energy Efficiency in Building
    • Konstantinos, P.1    Vineeta, P.2
  • 7
    • 8744220352 scopus 로고    scopus 로고
    • Statistical analysis of neural networks as applied to building energy prediction
    • R.H. Dodier, and G.P. Henze Statistical analysis of neural networks as applied to building energy prediction Trans. ASME 126 1 2004 592 600
    • (2004) Trans. ASME , vol.126 , Issue.1 , pp. 592-600
    • Dodier, R.H.1    Henze, G.P.2
  • 8
    • 84964058839 scopus 로고    scopus 로고
    • Application of artificial neural network to assessment of influence of operational parameters on the characteristic quantities of thermal transient process in a reciprocating mixer
    • the Netherlands
    • Rakoczy Masiuk Application of artificial neural network to assessment of influence of operational parameters on the characteristic quantities of thermal transient process in a reciprocating mixer 5th European Thermal-Sciences Conference the Netherlands 2008 8 p
    • (2008) 5th European Thermal-Sciences Conference
    • Masiuk, R.1
  • 9
    • 0033116849 scopus 로고    scopus 로고
    • Artificial neural networks as applied to long-term demand forecasting
    • Tawfiq AI-Saba, and Ibrahim EI-Amin Artificial neural networks as applied to long-term demand forecasting Artif. Intell. Eng. 13 1999 189 197
    • (1999) Artif. Intell. Eng. , vol.13 , pp. 189-197
    • AI-Saba, T.1    EI-Amin, I.2
  • 10
    • 0036497779 scopus 로고    scopus 로고
    • A new artificial peak power load forecaster based on non fixed neural networks
    • H. Huang-Chu, H. Rey-Chue, and Jer-guang Hsieh A new artificial peak power load forecaster based on non fixed neural networks Electr. Power Energy Syst. 24 2001 245 250
    • (2001) Electr. Power Energy Syst. , vol.24 , pp. 245-250
    • Huang-Chu, H.1    Rey-Chue, H.2    Hsieh, J.-G.3
  • 11
    • 84964065219 scopus 로고    scopus 로고
    • Université de Douala-Cameroun, mémoire de DEA présenté au laboratoire d'énergie de l'école doctorale des Sciences Fondamentales et Appliquées
    • Mba Léopold, Modélisation du comportement thermique du bâtiment: application d'une méthode neuronale. Université de Douala-Cameroun, mémoire de DEA présenté au laboratoire d'énergie de l'école doctorale des Sciences Fondamentales et Appliquées, 2009, 68 p.
    • (2009) Modélisation du Comportement Thermique du Bâtiment: Application d'Une Méthode Neuronale
    • Mba, L.1
  • 12
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko Approximation by superposition of a sigmoidal function Math. Control Signal Syst. 2 1989 303 314
    • (1989) Math. Control Signal Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 13
    • 84929165624 scopus 로고    scopus 로고
    • Ecole Polytechnique Fédérale de Lausanne. Thèse de doctorat présentée d'architecture
    • Bauer Manuel, Gestion biomimétique de l'énergie dans le bâtiment. Ecole Polytechnique Fédérale de Lausanne. Thèse de doctorat présentée d'architecture, 1998, 189 p.
    • (1998) Gestion Biomimétique de l'Énergie dans le Bâtiment
    • Bauer, M.1
  • 14
    • 0036532622 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia
    • Imran Tasadduq, Shafiqur Rehman, and Khaled Bubshait Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia Renew. Energy 25 2002 545 554
    • (2002) Renew. Energy , vol.25 , pp. 545-554
    • Tasadduq, I.1    Rehman, S.2    Bubshait, K.3
  • 16
    • 84906232211 scopus 로고    scopus 로고
    • Building behavior simulation by means of artificial neural network in summer conditions
    • Cinzia Buratti, Elisa Lascaro, Domenico Palladino, and Marco Vergoni Building behavior simulation by means of artificial neural network in summer conditions Sustainability 6 2014 5339 5353
    • (2014) Sustainability , vol.6 , pp. 5339-5353
    • Buratti, C.1    Lascaro, E.2    Palladino, D.3    Vergoni, M.4
  • 17
    • 84893846786 scopus 로고    scopus 로고
    • Artificial neural networks to predict the power output of PV panel
    • Valerio Lo Brano, Giuseppina Ciulla, and Mariavittoria Di Falco Artificial neural networks to predict the power output of PV panel Int. J. Photoenergy 2014 2014 1 12 Article ID 193083
    • (2014) Int. J. Photoenergy , vol.2014 , pp. 1-12
    • Lo Brano, V.1    Ciulla, G.2    Di Falco, M.3
  • 18
    • 0026205389 scopus 로고
    • A neural network methodology for heat transfer data analysis
    • J. Thibault, and B.P.A. Grandjean A neural network methodology for heat transfer data analysis Int. J. Heat Mass Transfer 34 1991 2063 2070
    • (1991) Int. J. Heat Mass Transfer , vol.34 , pp. 2063-2070
    • Thibault, J.1    Grandjean, B.P.A.2
  • 20
    • 34248534498 scopus 로고    scopus 로고
    • Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network
    • S. Yilmaz, and K. Atik Modeling of a mechanical cooling system with variable cooling capacity by using artificial neural network Appl. Therm. Eng. 27 2007 2308 2313
    • (2007) Appl. Therm. Eng. , vol.27 , pp. 2308-2313
    • Yilmaz, S.1    Atik, K.2
  • 21
    • 33748902591 scopus 로고    scopus 로고
    • Prediction of thermal conductivity of rock through physic-mechanical properties
    • T.N. Singh, S. Sinha, and V.K. Singh Prediction of thermal conductivity of rock through physic-mechanical properties Build. Environ. 42 2007 146 155
    • (2007) Build. Environ. , vol.42 , pp. 146-155
    • Singh, T.N.1    Sinha, S.2    Singh, V.K.3
  • 22
    • 61749097319 scopus 로고
    • Neural networks applied to building energy studies
    • H. Bloem (Ed.), JRC Ispra Ispra
    • J.F. Kreider Neural networks applied to building energy studies H. Bloem (Ed.), Workshop on Parameter Identification 1995 JRC Ispra Ispra 243 251
    • (1995) Workshop on Parameter Identification , pp. 243-251
    • Kreider, J.F.1
  • 23
    • 84964010370 scopus 로고    scopus 로고
    • Expression pattern analysis of different micro RNAs under nitrogen deprivation condition in root tissues of different wheat genotypes
    • Subodh Kumar Sinha, Manju Rani, Gayatri, and P.K. Mandal Expression pattern analysis of different micro RNAs under nitrogen deprivation condition in root tissues of different wheat genotypes Indo Global J. Pharm. Sci. 4 3 2014 194
    • (2014) Indo Global J. Pharm. Sci. , vol.4 , Issue.3 , pp. 194
    • Kumar Sinha, S.1    Rani, M.2    Gayatri3    Mandal, P.K.4
  • 25
    • 51249173550 scopus 로고
    • Prediction of meteorological parameters: I. Analytical method
    • E.C. Njau Prediction of meteorological parameters: I. Analytical method Nuovo Cimento 14C 1991 473 488
    • (1991) Nuovo Cimento , vol.14 C , pp. 473-488
    • Njau, E.C.1
  • 27
    • 0032023931 scopus 로고    scopus 로고
    • Prediction of monthly-mean hourly relativehumidity, ambient temperature, and wind velocity for India
    • G.V. Parishwad, R.K. Bhardwaj, and V.K. Nema Prediction of monthly-mean hourly relativehumidity, ambient temperature, and wind velocity for India Renew. Energy 13 3 1998 363 380
    • (1998) Renew. Energy , vol.13 , Issue.3 , pp. 363-380
    • Parishwad, G.V.1    Bhardwaj, R.K.2    Nema, V.K.3
  • 28
    • 33645386775 scopus 로고    scopus 로고
    • Estimation of operative temperature in buildings using artificial neural networks
    • M. Soleimani-Moheseni, B. Thomas, and Fahien Per Estimation of operative temperature in buildings using artificial neural networks Energy Build. 38 2006 635 640
    • (2006) Energy Build. , vol.38 , pp. 635-640
    • Soleimani-Moheseni, M.1    Thomas, B.2    Per, F.3
  • 29
    • 63049115986 scopus 로고    scopus 로고
    • Prediction of indoor temperature and relative humidity using neural network models: Model comparison
    • Tao Lu, and Martti Viljanen Prediction of indoor temperature and relative humidity using neural network models: model comparison Neural. Comput. Appl. 18 2009 345 357
    • (2009) Neural. Comput. Appl. , vol.18 , pp. 345-357
    • Lu, T.1    Viljanen, M.2
  • 30
    • 77952953206 scopus 로고    scopus 로고
    • Thermal behaviour prediction utilizing artificial neural networks for an open space
    • G. Mustafaraj, J. Ghena, and G. Lowry Thermal behaviour prediction utilizing artificial neural networks for an open space Appl. Math. Model. 34 2010 3216 3230
    • (2010) Appl. Math. Model. , vol.34 , pp. 3216-3230
    • Mustafaraj, G.1    Ghena, J.2    Lowry, G.3
  • 31
    • 84964010383 scopus 로고    scopus 로고
    • Application of artificial neural network for predicting the indoor air temperature in modern building in humid region
    • Alexis Kemajou, Léopold Mba, and Pierre Meukam Application of artificial neural network for predicting the indoor air temperature in modern building in humid region Br. J. Appl. Sci. Technol. 2 1 2012 23 34
    • (2012) Br. J. Appl. Sci. Technol. , vol.2 , Issue.1 , pp. 23-34
    • Kemajou, A.1    Mba, L.2    Meukam, P.3
  • 35
    • 84901601082 scopus 로고    scopus 로고
    • A review of methods to match building energy simulation models to measured data
    • Daniel Coakley, Paul Raftery, and Marcus Keane A review of methods to match building energy simulation models to measured data Renew. Sust. Energy Rev. 37 2014 123 141
    • (2014) Renew. Sust. Energy Rev. , vol.37 , pp. 123-141
    • Coakley, D.1    Raftery, P.2    Keane, M.3
  • 37
    • 84964010386 scopus 로고    scopus 로고
    • Adaptive study of thermal comfort in equatorial zone: Case of some buildings in Cameroon
    • ISO 9001:2008, Certified Journal
    • Modeste Kameni Nematchoua, Rene Tchinda, Wagner Augusto Andreasi, and Noel Djongyang Adaptive study of thermal comfort in equatorial zone: case of some buildings in Cameroon Int. J. Emerging Technol. Adv. Eng. 4 2 2014 36 47 www.ijetae.com (ISSN 2250-2459, ISO 9001:2008, Certified Journal)
    • (2014) Int. J. Emerging Technol. Adv. Eng. , vol.4 , Issue.2 , pp. 36-47
    • Kameni Nematchoua, M.1    Tchinda, R.2    Augusto Andreasi, W.3    Djongyang, N.4
  • 38
    • 84927966184 scopus 로고    scopus 로고
    • Instruments and methods in outdoor thermal comfort studies - The need for standardization
    • Erick Johansson, Sofia Thorsson, Rohinton Emmanuel, and Eduardo Kruger Instruments and methods in outdoor thermal comfort studies - the need for standardization Urban Clim. 10 2014 346 366
    • (2014) Urban Clim. , vol.10 , pp. 346-366
    • Johansson, E.1    Thorsson, S.2    Emmanuel, R.3    Kruger, E.4
  • 39
    • 84964010390 scopus 로고    scopus 로고
    • Utilisation d'un modèle hybride base sur la rlms et les rna-pmc pour la prédiction des paramètres indicateurs de la qualité des eaux souterraines cas de la nappe de Souss-Massa-Maroc
    • T. Manssouri, H. Sahbi, I. Manssouri, and B. Boudad Utilisation d'un modèle hybride base sur la rlms et les rna-pmc pour la prédiction des paramètres indicateurs de la qualité des eaux souterraines cas de la nappe de Souss-Massa-Maroc Eur. Sci. J. 11 June 2015 35 46
    • (2015) Eur. Sci. J. , vol.11 , Issue.JUNE , pp. 35-46
    • Manssouri, T.1    Sahbi, H.2    Manssouri, I.3    Boudad, B.4
  • 40
    • 84890844523 scopus 로고    scopus 로고
    • Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network
    • Subodh Paudel, Mohamed Elmtiri, Wil L. Kling, Olivier Le Corre, and Bruno Lacarrière Pseudo dynamic transitional modeling of building heating energy demand using artificial neural network Energy Build. 2014 10.1016/j.enbuil.2013.11.051
    • (2014) Energy Build.
    • Paudel, S.1    Elmtiri, M.2    Kling, W.L.3    Le Corre, O.4    Lacarrière, B.5
  • 41
    • 0026994698 scopus 로고
    • Degree-day base temperature for residential building energy prediction in Saudia Arabia
    • S.A.M. Said Degree-day base temperature for residential building energy prediction in Saudia Arabia ASHRAE Trans. Res. 98 1 1992 346 353
    • (1992) ASHRAE Trans. Res. , vol.98 , Issue.1 , pp. 346-353
    • Said, S.A.M.1
  • 45
    • 61749095807 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems
    • S. Jassar, Z. Liao, and L. Zhao Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems Build. Environ. 44 2009 1609 1616
    • (2009) Build. Environ. , vol.44 , pp. 1609-1616
    • Jassar, S.1    Liao, Z.2    Zhao, L.3
  • 48
    • 84858769800 scopus 로고    scopus 로고
    • Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers
    • G. Panchal, A. Ganatra, Y.P. Kosta, and D. Panchal Behaviour analysis of multilayer perceptrons with multiple hidden neurons and hidden layers Int. J. Comput. Theory Eng. 3 2 2011 332 337
    • (2011) Int. J. Comput. Theory Eng. , vol.3 , Issue.2 , pp. 332-337
    • Panchal, G.1    Ganatra, A.2    Kosta, Y.P.3    Panchal, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.