메뉴 건너뛰기




Volumn 54, Issue 1, 2011, Pages 163-174

Modeling of daily pan evaporation using partial least squares regression

Author keywords

artificial neural networks; daily pan evaporation; meteorological data; modeling; partial least squares regression

Indexed keywords

EVAPORATION; METEOROLOGY; MODELS; NEURAL NETWORKS; NONLINEAR EQUATIONS; WEATHER INFORMATION SERVICES;

EID: 78651472663     PISSN: 16747321     EISSN: 18691900     Source Type: Journal    
DOI: 10.1007/s11431-010-4205-z     Document Type: Article
Times cited : (30)

References (31)
  • 1
    • 84957790817 scopus 로고
    • Natural evaporation from open water, bare soil and grass
    • 10.1098/rspa.1948.0037
    • H. L. Penman 1948 Natural evaporation from open water, bare soil and grass Proceedings, Royal Society of London 193 120 145 10.1098/rspa.1948.0037
    • (1948) Proceedings, Royal Society of London , vol.193 , pp. 120-145
    • Penman, H.L.1
  • 3
    • 33847037909 scopus 로고    scopus 로고
    • Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate
    • 10.1002/hyp.6251
    • S. B. K. Tan E. B. Shuy L. H. C. Chua 2007 Modelling hourly and daily open-water evaporation rates in areas with an equatorial climate Hydrol Process 21 4 486 499 10.1002/hyp.6251
    • (2007) Hydrol Process , vol.21 , Issue.4 , pp. 486-499
    • Tan, S.B.K.1    Shuy, E.B.2    Chua, L.H.C.3
  • 5
    • 0002173848 scopus 로고
    • On the assessment of the surface heat flux and evaporation using large-scale parameters
    • 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
    • C. H. B. Priestley R. J. Taylor 1972 On the assessment of the surface heat flux and evaporation using large-scale parameters Monthly Weather Rev 100 81 92 10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
    • (1972) Monthly Weather Rev , vol.100 , pp. 81-92
    • Priestley, C.H.B.1    Taylor, R.J.2
  • 6
    • 49449126612 scopus 로고
    • A simple formula for estimating evaporation rates in various climates, using temperature data alone
    • 10.1016/0002-1571(77)90007-3
    • E. T. Linacre 1977 A simple formula for estimating evaporation rates in various climates, using temperature data alone Agric Met 18 6 409 424 10.1016/0002-1571(77)90007-3
    • (1977) Agric Met , vol.18 , Issue.6 , pp. 409-424
    • Linacre, E.T.1
  • 7
    • 0024649916 scopus 로고
    • Prediction of Class A pan evaporation in southwest Idaho
    • 10.1061/(ASCE)0733-9437(1989)115:2(166)
    • C. L. Hanson 1989 Prediction of Class A pan evaporation in southwest Idaho J Irrig Drain Eng 115 2 166 171 10.1061/(ASCE)0733-9437(1989)115:2(166)
    • (1989) J Irrig Drain Eng , vol.115 , Issue.2 , pp. 166-171
    • Hanson, C.L.1
  • 8
    • 39649120346 scopus 로고    scopus 로고
    • Developing regression models for predicting pan evaporation from climatic data-A comparison of multiple least-squares, principal components, and partial leastsquares approaches
    • 10.1061/(ASCE)0733-9437(2007)133:5(444)
    • G. M. Kovoor L. Nandagiri 2007 Developing regression models for predicting pan evaporation from climatic data-A comparison of multiple least-squares, principal components, and partial leastsquares approaches J Irrigd Drain Eng 133 5 444 454 10.1061/(ASCE)0733-9437(2007)133:5(444)
    • (2007) J Irrigd Drain Eng , vol.133 , Issue.5 , pp. 444-454
    • Kovoor, G.M.1    Nandagiri, L.2
  • 9
    • 77952290338 scopus 로고    scopus 로고
    • A comparative study of daily pan evaporation estimation using ANN, regression and climate based models
    • 10.1007/s11269-009-9514-2
    • P. B. Shirsath A. K. Singh 2010 A comparative study of daily pan evaporation estimation using ANN, regression and climate based models Water Resour Manage 24 1571 1581 10.1007/s11269-009-9514-2
    • (2010) Water Resour Manage , vol.24 , pp. 1571-1581
    • Shirsath, P.B.1    Singh, A.K.2
  • 10
    • 78651484871 scopus 로고    scopus 로고
    • Study on water surface evaporation forecasting based on single correlation coefficient
    • Y. Li 2010 Study on water surface evaporation forecasting based on single correlation coefficient Groundwater 32 2 113 114
    • (2010) Groundwater , vol.32 , Issue.2 , pp. 113-114
    • Li, Y.1
  • 11
    • 0036843660 scopus 로고    scopus 로고
    • Modelling evaporation using an artificial neural network algorithm
    • 10.1002/hyp.1096
    • K. P. Sudheer A. K. Gosain D. M. Rangan, et al. 2002 Modelling evaporation using an artificial neural network algorithm Hydrol Process 16 3189 3202 10.1002/hyp.1096
    • (2002) Hydrol Process , vol.16 , pp. 3189-3202
    • Sudheer, K.P.1    Gosain, A.K.2    Rangan, D.M.3
  • 12
    • 0034163592 scopus 로고    scopus 로고
    • Estimating daily pan evaporation with artificial neural networks
    • J. M. Bruton R. W. McClendon G. Hoogenboom 2000 Estimating daily pan evaporation with artificial neural networks Trans ASAE 43 2 491 496
    • (2000) Trans ASAE , vol.43 , Issue.2 , pp. 491-496
    • Bruton, J.M.1    McClendon, R.W.2    Hoogenboom, G.3
  • 13
    • 31444439227 scopus 로고    scopus 로고
    • Artificial neural network models of daily pan evaporation
    • 10.1061/(ASCE)1084-0699(2006)11:1(65)
    • M. E. Keskin O. Terzi 2006 Artificial neural network models of daily pan evaporation J. Hydrol Eng 11 1 65 70 10.1061/(ASCE)1084-0699(2006)11:1(65)
    • (2006) J. Hydrol Eng , vol.11 , Issue.1 , pp. 65-70
    • Keskin, M.E.1    Terzi, O.2
  • 14
    • 78650674817 scopus 로고    scopus 로고
    • Study on ANN calculation of water surface evaporation
    • L. Jin S. H. Shen Y. Luo, et al. 1996 Study on ANN calculation of water surface evaporation J Nanjing Institute of Meteorology 19 3 342 347
    • (1996) J Nanjing Institute of Meteorology , vol.19 , Issue.3 , pp. 342-347
    • Jin, L.1    Shen, S.H.2    Luo, Y.3
  • 15
    • 10244243705 scopus 로고    scopus 로고
    • Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey
    • 10.1623/hysj.49.6.1001.55718
    • M. E. Keskin O. Terzi D. Taylan 2004 Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey Hydrol Sci J 49 6 1001 1010 10.1623/hysj.49.6.1001.55718
    • (2004) Hydrol Sci J , vol.49 , Issue.6 , pp. 1001-1010
    • Keskin, M.E.1    Terzi, O.2    Taylan, D.3
  • 16
    • 33748803332 scopus 로고    scopus 로고
    • Estimating evaporation using ANFIS
    • 10.1061/(ASCE)0733-9437(2006)132:5(503)
    • O. Terzi M. E. Keskin E. D. Taylan 2006 Estimating evaporation using ANFIS J Irrig Drain Eng 132 5 503 507 10.1061/(ASCE)0733-9437(2006)132:5(503)
    • (2006) J Irrig Drain Eng , vol.132 , Issue.5 , pp. 503-507
    • Terzi, O.1    Keskin, M.E.2    Taylan, E.D.3
  • 17
    • 67649515826 scopus 로고    scopus 로고
    • Estimation of monthly pan evaporation using artificial neural networks and support vector machines
    • 10.3923/jas.2008.3497.3502
    • S. Eslamian S. A. Gohari M. Biabanaki, et al. 2008 Estimation of monthly pan evaporation using artificial neural networks and support vector machines J Appl Sci 8 19 3497 3502 10.3923/jas.2008.3497.3502
    • (2008) J Appl Sci , vol.8 , Issue.19 , pp. 3497-3502
    • Eslamian, S.1    Gohari, S.A.2    Biabanaki, M.3
  • 18
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural network in hydrology: Hydrologic applications
    • American Society of Civil Engineers. 10.1061/(ASCE)1084-0699(2000)5: 2(124)
    • American Society of Civil Engineers 2000 Artificial neural network in hydrology: hydrologic applications J Hydrol Eng 5 124 137 10.1061/(ASCE)1084- 0699(2000)5:2(124)
    • (2000) J Hydrol Eng , vol.5 , pp. 124-137
  • 19
    • 11144325691 scopus 로고
    • Partial least squares regression: A tutorial
    • 10.1016/0003-2670(86)80028-9
    • P. Geladi B. Kowalski 1986 Partial least squares regression: A tutorial Analytica Chimica Acta 185 1 17 10.1016/0003-2670(86)80028-9
    • (1986) Analytica Chimica Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.2
  • 21
    • 6344222582 scopus 로고    scopus 로고
    • Partial least squares regression
    • M. Lewis-Beck A. Bryman T. Futing (eds). Sage Thousand Oaks, CA
    • Abdi H. Partial least squares regression. In: Lewis-Beck M, Bryman A, Futing T, eds. The Sage Encyclopedia of Social Sciences Research Methods. Thousand Oaks, CA: Sage, 2003. 1-7
    • (2003) The Sage Encyclopedia of Social Sciences Research Methods , pp. 1-7
    • Abdi, H.1
  • 22
    • 34548175731 scopus 로고    scopus 로고
    • Long lead-time forecasting of U.S. streamflow using partial least squares regression
    • 10.1061/(ASCE)1084-0699(2007)12:5(442)
    • G. A. Tootle A. K. Singh T. C. Piechota, et al. 2007 Long lead-time forecasting of U.S. streamflow using partial least squares regression J Hydrol Eng 12 5 442 451 10.1061/(ASCE)1084-0699(2007)12:5(442)
    • (2007) J Hydrol Eng , vol.12 , Issue.5 , pp. 442-451
    • Tootle, G.A.1    Singh, A.K.2    Piechota, T.C.3
  • 23
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • P. R. Krishnaiah (eds). Academic Press New York
    • Wold H. Estimation of principal components and related models by iterative least squares. In: Krishnaiah P R, ed. Multivariate Analysis. New York: Academic Press, 1966. 391-420
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 25
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • 10.1061/(ASCE)1084-0699(2003)8:6(319)
    • T. Kim J. B. Valdes 2003 Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks J Hydrol Eng 8 6 319 328 10.1061/(ASCE)1084-0699(2003)8:6(319)
    • (2003) J Hydrol Eng , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.1    Valdes, J.B.2
  • 26
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • 10.1016/S0022-1694(00)00214-6
    • P. Coulibaly F. Anctil B. Bobée 2000 Daily reservoir inflow forecasting using artificial neural networks with stopped training approach J Hydrol 3 4 244 257 10.1016/S0022-1694(00)00214-6
    • (2000) J Hydrol , vol.3 , Issue.4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 27
    • 0035116580 scopus 로고    scopus 로고
    • River flow forecasting using artificial neural networks
    • 10.1016/S1464-1909(01)85005-X
    • Y. B. Dibike D. P. Solomatine 2001 River flow forecasting using artificial neural networks J Phys Chem Earth, Part B: Hydrol, Oceans Atmos 26 1 1 8 10.1016/S1464-1909(01)85005-X
    • (2001) J Phys Chem Earth, Part B: Hydrol, Oceans Atmos , vol.26 , Issue.1 , pp. 1-8
    • Dibike, Y.B.1    Solomatine, D.P.2
  • 28
    • 0018503856 scopus 로고
    • Comparative evaluation of statistical methods for water supply forecasting
    • R. H. McCuen W. J. Rawls B. L. Whaley 1979 Comparative evaluation of statistical methods for water supply forecasting Water Resour Bull 15 4 935 947
    • (1979) Water Resour Bull , vol.15 , Issue.4 , pp. 935-947
    • McCuen, R.H.1    Rawls, W.J.2    Whaley, B.L.3
  • 29
    • 0027009397 scopus 로고
    • Improved techniques in regression-based streamflow volume forecasting
    • 10.1061/(ASCE)0733-9496(1992)118:6(654)
    • D. C. Garen 1992 Improved techniques in regression-based streamflow volume forecasting J Water Res PL-ASCE 118 6 654 670 10.1061/(ASCE)0733- 9496(1992)118:6(654)
    • (1992) J Water Res PL-ASCE , vol.118 , Issue.6 , pp. 654-670
    • Garen, D.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.