메뉴 건너뛰기




Volumn 129, Issue , 2014, Pages 279-288

A Support Vector Machine-Firefly Algorithm based forecasting model to determine malaria transmission

Author keywords

FFA; Forecasting; Malarial incidences; SVM; Time series

Indexed keywords


EID: 84893812050     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.09.030     Document Type: Article
Times cited : (100)

References (35)
  • 1
    • 84860797879 scopus 로고    scopus 로고
    • Remote sensing-based time series models for malaria early warning in the highlands of ethiopia
    • Midekisa A., Senay G., Henebry G.M., Semuniguse P., Wimberly M.C., et al. Remote sensing-based time series models for malaria early warning in the highlands of ethiopia. Malaria J. 2012, 11(1):1-10.
    • (2012) Malaria J. , vol.11 , Issue.1 , pp. 1-10
    • Midekisa, A.1    Senay, G.2    Henebry, G.M.3    Semuniguse, P.4    Wimberly, M.C.5
  • 2
    • 79960124044 scopus 로고    scopus 로고
    • Malaria in northwest india. data analysis via partially observed stochastic differential equation models driven by Lévy noise
    • Bhadra A., Ionides E.L., Laneri K., Pascual M., Bouma M., Dhiman R.C. Malaria in northwest india. data analysis via partially observed stochastic differential equation models driven by Lévy noise. J. Am. Stat. Assoc. 2011, 106(494):440-451.
    • (2011) J. Am. Stat. Assoc. , vol.106 , Issue.494 , pp. 440-451
    • Bhadra, A.1    Ionides, E.L.2    Laneri, K.3    Pascual, M.4    Bouma, M.5    Dhiman, R.C.6
  • 4
    • 84893732372 scopus 로고    scopus 로고
    • W.H. Organization, World malaria report 2008, World Health Organization
    • W.H. Organization, World malaria report 2008, World Health Organization, 2008.
    • (2008)
  • 5
    • 78650183417 scopus 로고    scopus 로고
    • India's invisible malaria burden
    • Hay S.I., Gething P.W., Snow R.W. India's invisible malaria burden. Lancet 2010, 376(9754):1716-1717.
    • (2010) Lancet , vol.376 , Issue.9754 , pp. 1716-1717
    • Hay, S.I.1    Gething, P.W.2    Snow, R.W.3
  • 7
    • 0004311217 scopus 로고
    • Time Series Analysis, Control, and Forecasting
    • G.E. Box, G.M. Jenkins, Time Series Analysis, Control, and Forecasting, 1976.
    • (1976)
    • Box, G.E.1    Jenkins, G.M.2
  • 8
    • 0024349915 scopus 로고
    • Non-linear phenomena in host-parasite interactions
    • Anderson R., May R., Gupta S., et al. Non-linear phenomena in host-parasite interactions. Parasitology 1989, 99(1):59-79.
    • (1989) Parasitology , vol.99 , Issue.1 , pp. 59-79
    • Anderson, R.1    May, R.2    Gupta, S.3
  • 9
    • 78049464373 scopus 로고    scopus 로고
    • Modeling uncertainty analysis in flow and solute transport model using adaptive neuro fuzzy inference system and particle swarm optimization
    • Sudheer C., Mathur S. Modeling uncertainty analysis in flow and solute transport model using adaptive neuro fuzzy inference system and particle swarm optimization. KSCE J. Civil Eng. 2010, 14(6):941-951.
    • (2010) KSCE J. Civil Eng. , vol.14 , Issue.6 , pp. 941-951
    • Sudheer, C.1    Mathur, S.2
  • 10
    • 84857726214 scopus 로고    scopus 로고
    • Particle swarm optimization trained neural network for aquifer parameter estimation
    • Sudheer C., Mathur S. Particle swarm optimization trained neural network for aquifer parameter estimation. KSCE J. Civil Eng. 2012, 16(3):298-307.
    • (2012) KSCE J. Civil Eng. , vol.16 , Issue.3 , pp. 298-307
    • Sudheer, C.1    Mathur, S.2
  • 11
    • 84880387876 scopus 로고    scopus 로고
    • Network-scale traffic modeling and forecasting with graphical lasso and neural networks
    • Sun S., Huang R., Gao Y. Network-scale traffic modeling and forecasting with graphical lasso and neural networks. J. Transp. Eng. 2012, 138(11):1358-1367.
    • (2012) J. Transp. Eng. , vol.138 , Issue.11 , pp. 1358-1367
    • Sun, S.1    Huang, R.2    Gao, Y.3
  • 13
    • 80955130702 scopus 로고    scopus 로고
    • Using sequential unconstrained minimization techniques to simplify svm solvers
    • Joshi S., Ramakrishnan G., Chandra S., et al. Using sequential unconstrained minimization techniques to simplify svm solvers. Neurocomputing 2012, 77(1):253-260.
    • (2012) Neurocomputing , vol.77 , Issue.1 , pp. 253-260
    • Joshi, S.1    Ramakrishnan, G.2    Chandra, S.3
  • 14
    • 79953038785 scopus 로고    scopus 로고
    • Maximal discrepancy for support vector machines
    • Anguita D., Ghio A., Ridella S. Maximal discrepancy for support vector machines. Neurocomputing 2011, 74(9):1436-1443.
    • (2011) Neurocomputing , vol.74 , Issue.9 , pp. 1436-1443
    • Anguita, D.1    Ghio, A.2    Ridella, S.3
  • 15
    • 80052955921 scopus 로고    scopus 로고
    • A review of optimization methodologies in support vector machines
    • Shawe-Taylor J., Sun S. A review of optimization methodologies in support vector machines. Neurocomputing 2011, 74(17):3609-3618.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3609-3618
    • Shawe-Taylor, J.1    Sun, S.2
  • 16
    • 84870238942 scopus 로고    scopus 로고
    • Multitask multiclass support vector machines. model and experiments
    • Ji Y., Sun S. Multitask multiclass support vector machines. model and experiments. Pattern Recognit. 2013, 46(3):914-924.
    • (2013) Pattern Recognit. , vol.46 , Issue.3 , pp. 914-924
    • Ji, Y.1    Sun, S.2
  • 17
    • 84869055767 scopus 로고    scopus 로고
    • Multitask twin support vector machines
    • in: Neural Information Processing, Springer
    • X. Xie, S. Sun, Multitask twin support vector machines, in: Neural Information Processing, Springer, 2012, pp. 341-348.
    • (2012) , pp. 341-348
    • Xie, X.1    Sun, S.2
  • 18
    • 84875904306 scopus 로고    scopus 로고
    • Groundwater level forecasting using SVM-PSO
    • Sudheer C., Mathur S. Groundwater level forecasting using SVM-PSO. Int. J. Hydrol. Sci. Technol. 2012, 2(2):202-218.
    • (2012) Int. J. Hydrol. Sci. Technol. , vol.2 , Issue.2 , pp. 202-218
    • Sudheer, C.1    Mathur, S.2
  • 19
    • 84887452388 scopus 로고    scopus 로고
    • A survey of multi-view machine learning
    • Sun S. A survey of multi-view machine learning. Neural Comput. Appl. 2013, 1-8. 10.1007/s00521-013-1362-6.
    • (2013) Neural Comput. Appl. , pp. 1-8
    • Sun, S.1
  • 20
    • 84878941786 scopus 로고    scopus 로고
    • A PSO and pattern search based memetic algorithm for SVMS parameters optimization
    • Bao Y., Hu Z., Xiong T. A PSO and pattern search based memetic algorithm for SVMS parameters optimization. Neurocomputing 2013, 117(6):98-106.
    • (2013) Neurocomputing , vol.117 , Issue.6 , pp. 98-106
    • Bao, Y.1    Hu, Z.2    Xiong, T.3
  • 21
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs F., Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64:107-117.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 22
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • Lorena A.C., de Carvalho A.C. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing 2008, 71(16):3326-3334.
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3326-3334
    • Lorena, A.C.1    de Carvalho, A.C.2
  • 23
    • 4944228528 scopus 로고    scopus 로고
    • A Practical Guide to Support Vector Classification
    • C. Hsu, C. Chang, C. Lin, et al., A Practical Guide to Support Vector Classification, 2003.
    • (2003)
    • Hsu, C.1    Chang, C.2    Lin, C.3
  • 24
    • 0141430928 scopus 로고    scopus 로고
    • Radius margin bounds for support vector machines with the rbf kernel
    • Chung K.-M., Kao W.-C., Sun C.-L., Wang L.-L., Lin C.-J. Radius margin bounds for support vector machines with the rbf kernel. Neural Comput. 2003, 15(11):2643-2681.
    • (2003) Neural Comput. , vol.15 , Issue.11 , pp. 2643-2681
    • Chung, K.-M.1    Kao, W.-C.2    Sun, C.-L.3    Wang, L.-L.4    Lin, C.-J.5
  • 25
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46(1-3):131-159.
    • (2002) Mach. Learn. , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 26
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 27
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam C., Liong S., Pasha M. Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinforma. 2001, 3(3):141-152.
    • (2001) J. Hydroinforma. , vol.3 , Issue.3 , pp. 141-152
    • Sivapragasam, C.1    Liong, S.2    Pasha, M.3
  • 28
    • 1642578192 scopus 로고    scopus 로고
    • Modelling of river discharges and rainfall using radial basis function networks based on support vector regression
    • Choy K., Chan C. Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. Int. J. Syst. Sci. 2003, 34(1):763-773.
    • (2003) Int. J. Syst. Sci. , vol.34 , Issue.1 , pp. 763-773
    • Choy, K.1    Chan, C.2
  • 29
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X., Liong S., Babovic V. EC-SVM approach for real-time hydrologic forecasting. J. Hydroinforma. 2004, 6(3):209-223.
    • (2004) J. Hydroinforma. , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.1    Liong, S.2    Babovic, V.3
  • 30
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm, stochastic test functions and design optimisation
    • Yang X.-S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010, 2(2):78-84.
    • (2010) Int. J. Bio-Inspired Comput. , vol.2 , Issue.2 , pp. 78-84
    • Yang, X.-S.1
  • 31
    • 70450219535 scopus 로고    scopus 로고
    • Firefly algorithm for continuous constrained optimization tasks
    • in: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, Springer
    • S. Łukasik, S. Zak, Firefly algorithm for continuous constrained optimization tasks, in: Computational Collective Intelligence. Semantic Web, Social Networks and Multiagent Systems, Springer, 2009, pp. 97-106.
    • (2009) , pp. 97-106
    • Łukasik, S.1    Zak, S.2
  • 32
    • 80055043441 scopus 로고    scopus 로고
    • Firefly algorithm, levy flights and global optimization
    • in: Research and Development in Intelligent Systems XXVI, Springer
    • X.-S. Yang, Firefly algorithm, levy flights and global optimization, in: Research and Development in Intelligent Systems XXVI, Springer, 2010, pp. 209-218.
    • (2010) , pp. 209-218
    • Yang, X.-S.1
  • 33
    • 77957863557 scopus 로고    scopus 로고
    • Firefly algorithms for multimodal optimization
    • in: Stochastic Algorithms: Foundations and Applications, Springer
    • X.-S. Yang, Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications, Springer, 2009, pp. 169-178.
    • (2009) , pp. 169-178
    • Yang, X.-S.1
  • 34
    • 0038076657 scopus 로고    scopus 로고
    • Neural network toolbox for use with matlab.
    • H. Demuth, M. Beale, Neural network toolbox for use with matlab.
    • Demuth, H.1    Beale, M.2
  • 35
    • 78049358493 scopus 로고    scopus 로고
    • A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
    • Chau K., Wu C. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinforma. 2010, 12(4):458-473.
    • (2010) J. Hydroinforma. , vol.12 , Issue.4 , pp. 458-473
    • Chau, K.1    Wu, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.