메뉴 건너뛰기




Volumn 103, Issue 4, 2009, Pages 527-535

Application and analysis of support vector machine based simulation for runoff and sediment yield

Author keywords

[No Author keywords available]

Indexed keywords

CALIBRATION; EFFICIENCY; PATTERN RECOGNITION; RUNOFF; SEDIMENTS;

EID: 67650621579     PISSN: 15375110     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biosystemseng.2009.04.017     Document Type: Article
Times cited : (98)

References (23)
  • 1
    • 34250192887 scopus 로고    scopus 로고
    • Suspended sediment prediction by using two different feed-forward back-propagation algorithms
    • Ardiclioglu M., Kisi O., and Haktanir T. Suspended sediment prediction by using two different feed-forward back-propagation algorithms. Canadian Journal of Civil Engineering 34 1 (2007) 120-125
    • (2007) Canadian Journal of Civil Engineering , vol.34 , Issue.1 , pp. 120-125
    • Ardiclioglu, M.1    Kisi, O.2    Haktanir, T.3
  • 3
    • 33746406254 scopus 로고    scopus 로고
    • Simulation of runoff and sediment yield using artificial neural networks
    • Agarwal A., Mishra S.K., Ram S., and Singh J.K. Simulation of runoff and sediment yield using artificial neural networks. Biosystems Engineering 94 4 (2006) 597-613
    • (2006) Biosystems Engineering , vol.94 , Issue.4 , pp. 597-613
    • Agarwal, A.1    Mishra, S.K.2    Ram, S.3    Singh, J.K.4
  • 4
    • 45449119903 scopus 로고    scopus 로고
    • Estimation of daily suspended sediments using support vector machines
    • Cimen M. Estimation of daily suspended sediments using support vector machines. Hydrological Science Journal 53 3 (2008) 656-666
    • (2008) Hydrological Science Journal , vol.53 , Issue.3 , pp. 656-666
    • Cimen, M.1
  • 7
    • 38149148184 scopus 로고
    • On correlation, with applications to the radar and raingage measurement of rainfall
    • Kessler E., and Neas B. On correlation, with applications to the radar and raingage measurement of rainfall. Atmospheric Research 34 (1994) 217-229
    • (1994) Atmospheric Research , vol.34 , pp. 217-229
    • Kessler, E.1    Neas, B.2
  • 8
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian Kernel
    • Keerthi S.S., and Lin C.J. Asymptotic behaviors of support vector machines with Gaussian Kernel. Neural Computation 15 (2003) 1667-1689
    • (2003) Neural Computation , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 9
    • 0031224890 scopus 로고    scopus 로고
    • The continuing search for an anthropogenic climate change signal - limitations of correlation-based approaches
    • Legates D.R., and Davis R.E. The continuing search for an anthropogenic climate change signal - limitations of correlation-based approaches. Geophysical Research Letters 24 18 (1997) 2319-2322
    • (1997) Geophysical Research Letters , vol.24 , Issue.18 , pp. 2319-2322
    • Legates, D.R.1    Davis, R.E.2
  • 10
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "Goodness of Fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., and McCabe G.J. Evaluating the use of "Goodness of Fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35 1 (1999) 233-241
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 11
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models. Journal of Hydrology 10 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 15
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285 (2004) 96-113
    • (2004) Journal of Hydrology , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 16
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: upper siwane river, India
    • 10.1061/(ASCE)1084-0699(2006)11
    • Raghuwanshi N.S., Singh R., and Reddy L.S. Runoff and sediment yield modeling using artificial neural networks: upper siwane river, India. Journal of Hydrologic Engineering 1 71 (2006) 10.1061/(ASCE)1084-0699(2006)11
    • (2006) Journal of Hydrologic Engineering , vol.1 , Issue.71
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 18
    • 37249053375 scopus 로고    scopus 로고
    • Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data
    • 10.1007/s11053-006-9013-6
    • Twarakavi N.K., Misra D., and Bandopadhyay S. Prediction of arsenic in bedrock derived stream sediments at a gold mine site under conditions of sparse data. Natural Resources Research (2006) 10.1007/s11053-006-9013-6
    • (2006) Natural Resources Research
    • Twarakavi, N.K.1    Misra, D.2    Bandopadhyay, S.3
  • 21
    • 0019707668 scopus 로고
    • On the validation of models
    • p. 179
    • Willmott C.J. On the validation of models. Physical Geography 2 (1981) 184-194 p. 179
    • (1981) Physical Geography , vol.2 , pp. 184-194
    • Willmott, C.J.1
  • 23
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.