-
1
-
-
33745594044
-
The gut flora as a forgotten organ
-
O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688-93.
-
(2006)
EMBO Rep
, vol.7
, pp. 688-693
-
-
O'Hara, A.M.1
Shanahan, F.2
-
2
-
-
84978374754
-
A microbial perspective of human developmental biology
-
Charbonneau MR, Blanton LV, DiGiulio DB, et al. A microbial perspective of human developmental biology. Nature 2016;535:48-55.
-
(2016)
Nature
, vol.535
, pp. 48-55
-
-
Charbonneau, M.R.1
Blanton, L.V.2
DiGiulio, D.B.3
-
3
-
-
84977622019
-
Diet-microbiota interactions as moderators of human metabolism
-
Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016;535:56-64.
-
(2016)
Nature
, vol.535
, pp. 56-64
-
-
Sonnenburg, J.L.1
Bäckhed, F.2
-
4
-
-
0036399823
-
How host-microbial interactions shape the nutrient environment of the mammalian intestine
-
Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002;22:283-307.
-
(2002)
Annu Rev Nutr
, vol.22
, pp. 283-307
-
-
Hooper, L.V.1
Midtvedt, T.2
Gordon, J.I.3
-
5
-
-
79959201412
-
Human nutrition, the gut microbiome and the immune system
-
Kau AL, Ahern PP, Griffin NW, et al. Human nutrition, the gut microbiome and the immune system. Nature 2011;474:327-36.
-
(2011)
Nature
, vol.474
, pp. 327-336
-
-
Kau, A.L.1
Ahern, P.P.2
Griffin, N.W.3
-
6
-
-
84923383600
-
Impact of diet on the human intestinal microbiota
-
Tan H, O'Toole PW. Impact of diet on the human intestinal microbiota. Curr Opin Food Sci 2015;2:71-7.
-
(2015)
Curr Opin Food Sci
, vol.2
, pp. 71-77
-
-
Tan, H.1
O'Toole, P.W.2
-
7
-
-
84992702870
-
Linking the microbiota, chronic disease, and the immune system
-
Hand TW, Vujkovic-Cvijin I, Ridaura VK, et al. Linking the microbiota, chronic disease, and the immune system. Trends Endocrinol Metab 2016;27:831-43.
-
(2016)
Trends Endocrinol Metab
, vol.27
, pp. 831-843
-
-
Hand, T.W.1
Vujkovic-Cvijin, I.2
Ridaura, V.K.3
-
8
-
-
85017281936
-
The role of early life nutrition in the establishment of gastrointestinal microbial composition and function
-
Davis EC, Wang M, Donovan SM. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes 2017;8:143-71.
-
(2017)
Gut Microbes
, vol.8
, pp. 143-171
-
-
Davis, E.C.1
Wang, M.2
Donovan, S.M.3
-
9
-
-
84964330988
-
Microbial contributions to chronic inflammation and metabolic disease
-
Shanahan F, Sheehan D. Microbial contributions to chronic inflammation and metabolic disease. Curr Opin Clin Nutr Metab Care 2016;19:257-62.
-
(2016)
Curr Opin Clin Nutr Metab Care
, vol.19
, pp. 257-262
-
-
Shanahan, F.1
Sheehan, D.2
-
10
-
-
85012115740
-
Inflammation, metaflammation and immunometabolic disorders
-
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017;542:177-85.
-
(2017)
Nature
, vol.542
, pp. 177-185
-
-
Hotamisligil, G.S.1
-
11
-
-
84965058071
-
Antibiotic use and its consequences for the normal microbiome
-
Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science 2016;352:544-5.
-
(2016)
Science
, vol.352
, pp. 544-545
-
-
Blaser, M.J.1
-
12
-
-
84920909558
-
Diet dominates host genotype in shaping the murine gut Microbiota
-
Carmody RN, Gerber GK, Luevano JM, et al. Diet dominates host genotype in shaping the murine gut Microbiota. Cell Host Microbe 2015;17:72-84.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 72-84
-
-
Carmody, R.N.1
Gerber, G.K.2
Luevano, J.M.3
-
13
-
-
84892828465
-
Diet rapidly and reproducibly alters the human gut microbiome
-
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-63.
-
(2014)
Nature
, vol.505
, pp. 559-563
-
-
David, L.A.1
Maurice, C.F.2
Carmody, R.N.3
-
15
-
-
84991053856
-
Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism
-
Wahlström A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 2016;24:41-50.
-
(2016)
Cell Metab
, vol.24
, pp. 41-50
-
-
Wahlström, A.1
Sayin, S.I.2
Marschall, H.U.3
-
16
-
-
84925500413
-
Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile
-
Buffie CG, Bucci V, Stein RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015;517:205-8.
-
(2015)
Nature
, vol.517
, pp. 205-208
-
-
Buffie, C.G.1
Bucci, V.2
Stein, R.R.3
-
17
-
-
84901020405
-
Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut
-
Joyce SA, MacSharry J, Casey PG, et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci U S A 2014;111:7421-6.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 7421-7426
-
-
Joyce, S.A.1
MacSharry, J.2
Casey, P.G.3
-
18
-
-
85014707675
-
Microbiome-modulated metabolites at the interface of host immunity
-
Blacher E, Levy M, Tatirovsky E, et al. Microbiome-modulated metabolites at the interface of host immunity. J Immunol 2017;198:572-80.
-
(2017)
J Immunol
, vol.198
, pp. 572-580
-
-
Blacher, E.1
Levy, M.2
Tatirovsky, E.3
-
19
-
-
84971519476
-
From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites
-
Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016;165:1332-45.
-
(2016)
Cell
, vol.165
, pp. 1332-1345
-
-
Koh, A.1
De Vadder, F.2
Kovatcheva-Datchary, P.3
-
20
-
-
84973667684
-
Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome
-
Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 2016;534:213-7.
-
(2016)
Nature
, vol.534
, pp. 213-217
-
-
Perry, R.J.1
Peng, L.2
Barry, N.A.3
-
21
-
-
84992424424
-
Microbially produced acetate: A "missing link" in understanding obesity?
-
Trent CM, Blaser MJ. Microbially produced acetate: a "missing link" in understanding obesity? Cell Metab 2016;24:9-10.
-
(2016)
Cell Metab
, vol.24
, pp. 9-10
-
-
Trent, C.M.1
Blaser, M.J.2
-
22
-
-
84874963999
-
Bacteria as vitamin suppliers to their host: A gut microbiota perspective
-
LeBlanc JG, Milani C, de Giori GS, et al. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 2013;24:160-8.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 160-168
-
-
LeBlanc, J.G.1
Milani, C.2
De Giori, G.S.3
-
23
-
-
84966526506
-
CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
-
Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016;22:598-605.
-
(2016)
Nat Med
, vol.22
, pp. 598-605
-
-
Lamas, B.1
Richard, M.L.2
Leducq, V.3
-
24
-
-
84900551126
-
T-cell activation by transitory neo-antigens derived from distinct microbial pathways
-
Corbett AJ, Eckle SB, Birkinshaw RW, et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 2014;509:361-5.
-
(2014)
Nature
, vol.509
, pp. 361-365
-
-
Corbett, A.J.1
Eckle, S.B.2
Birkinshaw, R.W.3
-
25
-
-
85010635895
-
Probiotics for prevention of urinary stones
-
Lieske JC. Probiotics for prevention of urinary stones. Ann Transl Med 2017;5:29.
-
(2017)
Ann Transl Med
, vol.5
, pp. 29
-
-
Lieske, J.C.1
-
26
-
-
84921417572
-
The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases
-
Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med 2015;66:343-59.
-
(2015)
Annu Rev Med
, vol.66
, pp. 343-359
-
-
Brown, J.M.1
Hazen, S.L.2
-
27
-
-
85052274144
-
Archaebiotics: Proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease
-
Brugère JF, Borrel G, Gaci N, et al. Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 2014;5:5-10.
-
(2014)
Gut Microbes
, vol.5
, pp. 5-10
-
-
Brugère, J.F.1
Borrel, G.2
Gaci, N.3
-
28
-
-
84969577558
-
What's LPS got to do with it? A role for gut LPS variants in driving autoimmune and allergic disease
-
Feehley T, Belda-Ferre P, Nagler CR. What's LPS got to do with it? A role for gut LPS variants in driving autoimmune and allergic disease. Cell Host Microbe 2016;19:572-4.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 572-574
-
-
Feehley, T.1
Belda-Ferre, P.2
Nagler, C.R.3
-
29
-
-
34347399563
-
Metabolic endotoxemia initiates obesity and insulin resistance
-
Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-72.
-
(2007)
Diabetes
, vol.56
, pp. 1761-1772
-
-
Cani, P.D.1
Amar, J.2
Iglesias, M.A.3
-
30
-
-
84945481976
-
Human breast milk: A review on its composition and bioactivity
-
Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev 2015;91:629-35.
-
(2015)
Early Hum Dev
, vol.91
, pp. 629-635
-
-
Andreas, N.J.1
Kampmann, B.2
Mehring Le-Doare, K.3
-
33
-
-
84864465909
-
Human milk oligosaccharides: Every baby needs a sugar Mama
-
Bode L. Human milk oligosaccharides: every baby needs a sugar Mama. Glycobiology 2012;22:1147-62.
-
(2012)
Glycobiology
, vol.22
, pp. 1147-1162
-
-
Bode, L.1
-
34
-
-
0032831862
-
Oligosaccharides in human milk during different phases of lactation
-
Coppa GV, Pierani P, Zampini L, et al. Oligosaccharides in human milk during different phases of lactation. Acta Paediatr 1999;88(Suppl 5):89-94.
-
(1999)
Acta Paediatr
, vol.88
, pp. 89-94
-
-
Coppa, G.V.1
Pierani, P.2
Zampini, L.3
-
35
-
-
38949100389
-
Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry
-
Niñonuevo MR, Perkins PD, Francis J, et al. Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. J Agric Food Chem 2008;56:618-26.
-
(2008)
J Agric Food Chem
, vol.56
, pp. 618-626
-
-
Niñonuevo, M.R.1
Perkins, P.D.2
Francis, J.3
-
36
-
-
83155176224
-
Preterm milk oligosaccharides during the first month of lactation
-
Gabrielli O, Zampini L, Galeazzi T, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011;128:e1520-31.
-
(2011)
Pediatrics
, vol.128
, pp. e1520-e1531
-
-
Gabrielli, O.1
Zampini, L.2
Galeazzi, T.3
-
37
-
-
0034917101
-
Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation
-
Chaturvedi P, Warren CD, Altaye M, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 2001;11:365-72.
-
(2001)
Glycobiology
, vol.11
, pp. 365-372
-
-
Chaturvedi, P.1
Warren, C.D.2
Altaye, M.3
-
38
-
-
0035699454
-
Detection of four human milk groups with respect to Lewis-blood-group-dependent oligosaccharides by serologic and chromatographic analysis
-
Stahl B, Thurl S, Henker J, et al. Detection of four human milk groups with respect to Lewis-blood-group-dependent oligosaccharides by serologic and chromatographic analysis. Adv Exp Med Biol 2001;501:299-306.
-
(2001)
Adv Exp Med Biol
, vol.501
, pp. 299-306
-
-
Stahl, B.1
Thurl, S.2
Henker, J.3
-
39
-
-
84861011960
-
Diversity of bifidobacteria within the infant gut Microbiota
-
Turroni F, Peano C, Pass DA, et al. Diversity of bifidobacteria within the infant gut Microbiota. PLoS One 2012;7:e36957.
-
(2012)
PLoS One
, vol.7
, pp. e36957
-
-
Turroni, F.1
Peano, C.2
Pass, D.A.3
-
40
-
-
0034076597
-
Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods
-
Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000;30:61-7.
-
(2000)
J Pediatr Gastroenterol Nutr
, vol.30
, pp. 61-67
-
-
Harmsen, H.J.1
Wildeboer-Veloo, A.C.2
Raangs, G.C.3
-
41
-
-
85015913780
-
Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort
-
Hill CJ, Lynch DB, Murphy K, et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 2017;5:4.
-
(2017)
Microbiome
, vol.5
, pp. 4
-
-
Hill, C.J.1
Lynch, D.B.2
Murphy, K.3
-
42
-
-
84933516257
-
Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants
-
Lewis ZT, Totten SM, Smilowitz JT, et al. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 2015;3:13.
-
(2015)
Microbiome
, vol.3
, pp. 13
-
-
Lewis, Z.T.1
Totten, S.M.2
Smilowitz, J.T.3
-
43
-
-
79956257405
-
Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine
-
Wacklin P, Mäkivuokko H, Alakulppi N, et al. Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 2011;6:e20113.
-
(2011)
PLoS One
, vol.6
, pp. e20113
-
-
Wacklin, P.1
Mäkivuokko, H.2
Alakulppi, N.3
-
44
-
-
57749113201
-
The genome sequence of Bifidobacterium longum subsp. Infantis reveals adaptations for milk utilization within the infant microbiome
-
Sela DA, Chapman J, Adeuya A, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 2008;105:18964-9.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 18964-18969
-
-
Sela, D.A.1
Chapman, J.2
Adeuya, A.3
-
45
-
-
78650609691
-
Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging
-
Turroni F, Bottacini F, Foroni E, et al. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 2010;107:19514-9.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 19514-19519
-
-
Turroni, F.1
Bottacini, F.2
Foroni, E.3
-
46
-
-
85002680289
-
Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose through overlapping, yet distinct pathways
-
James K, Motherway MO, Bottacini F, et al. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neotetraose through overlapping, yet distinct pathways. Sci Rep 2016;6:38560.
-
(2016)
Sci Rep
, vol.6
, pp. 38560
-
-
James, K.1
Motherway, M.O.2
Bottacini, F.3
-
47
-
-
84976385531
-
A key genetic factor for fucosyllactose utilization affects infant gut Microbiota development
-
Matsuki T, Yahagi K, Mori H, et al. A key genetic factor for fucosyllactose utilization affects infant gut Microbiota development. Nat Commun 2016;7:11939.
-
(2016)
Nat Commun
, vol.7
, pp. 11939
-
-
Matsuki, T.1
Yahagi, K.2
Mori, H.3
-
48
-
-
84992021815
-
A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. Longum SC596
-
Garrido D, Ruiz-Moyano S, Kirmiz N, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Rep 2016;6:35045.
-
(2016)
Sci Rep
, vol.6
, pp. 35045
-
-
Garrido, D.1
Ruiz-Moyano, S.2
Kirmiz, N.3
-
49
-
-
84926468863
-
Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucinbased medium
-
Egan M, Motherway MO, Kilcoyne M, et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucinbased medium. BMC Microbiol 2014;14:282.
-
(2014)
BMC Microbiol
, vol.14
, pp. 282
-
-
Egan, M.1
Motherway, M.O.2
Kilcoyne, M.3
-
50
-
-
84943327494
-
Exploring vertical transmission of Bifidobacteria from mother to child
-
Milani C, Mancabelli L, Lugli GA, et al. Exploring vertical transmission of Bifidobacteria from mother to child. Appl Environ Microbiol 2015;81:7078-87.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 7078-7087
-
-
Milani, C.1
Mancabelli, L.2
Lugli, G.A.3
-
51
-
-
84873719951
-
The human milk microbiota: Origin and potential roles in health and disease
-
Fernández L, Langa S, Martín V, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res 2013;69:1-10.
-
(2013)
Pharmacol Res
, vol.69
, pp. 1-10
-
-
Fernández, L.1
Langa, S.2
Martín, V.3
-
52
-
-
84962605055
-
The maternal microbiota drives early postnatal innate immune development
-
Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, et al. The maternal microbiota drives early postnatal innate immune development. Science 2016;351:1296-302.
-
(2016)
Science
, vol.351
, pp. 1296-1302
-
-
Gomez De Agüero, M.1
Ganal-Vonarburg, S.C.2
Fuhrer, T.3
-
53
-
-
84866762073
-
Optimal duration of exclusive breastfeeding
-
Kramer MS, Kakuma R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev 2012;(8):CD003517.
-
(2012)
Cochrane Database Syst Rev
, Issue.8
, pp. CD003517
-
-
Kramer, M.S.1
Kakuma, R.2
-
54
-
-
38349181488
-
Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics
-
Macfarlane GT, Steed H, Macfarlane S. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 2008;104:305-44.
-
(2008)
J Appl Microbiol
, vol.104
, pp. 305-344
-
-
Macfarlane, G.T.1
Steed, H.2
Macfarlane, S.3
-
56
-
-
84893741493
-
Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by trypanosoma cruzi trans-sialidase
-
Holck J, Larsen DM, Michalak M, et al. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by trypanosoma cruzi trans-sialidase. N Biotechnol 2014;31:156-65.
-
(2014)
N Biotechnol
, vol.31
, pp. 156-165
-
-
Holck, J.1
Larsen, D.M.2
Michalak, M.3
-
57
-
-
84884591440
-
Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines
-
Weichert S, Jennewein S, Hüfner E, et al. Bioengineered 2'-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res 2013;33:831-8.
-
(2013)
Nutr Res
, vol.33
, pp. 831-838
-
-
Weichert, S.1
Jennewein, S.2
Hüfner, E.3
-
58
-
-
84903134830
-
Persistent gut microbiota immaturity in malnourished Bangladeshi children
-
Subramanian S, Huq S, Yatsunenko T, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014;510:417-21.
-
(2014)
Nature
, vol.510
, pp. 417-421
-
-
Subramanian, S.1
Huq, S.2
Yatsunenko, T.3
-
59
-
-
84925852624
-
Cultivating healthy growth and nutrition through the gut Microbiota
-
Subramanian S, Blanton LV, Frese SA, et al. Cultivating healthy growth and nutrition through the gut Microbiota. Cell 2015;161:36-48.
-
(2015)
Cell
, vol.161
, pp. 36-48
-
-
Subramanian, S.1
Blanton, L.V.2
Frese, S.A.3
-
60
-
-
84959016595
-
Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children
-
Blanton LV, Charbonneau MR, Salih T, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 2016;351:aad3311.
-
(2016)
Science
, vol.351
, pp. aad3311
-
-
Blanton, L.V.1
Charbonneau, M.R.2
Salih, T.3
-
61
-
-
84959017701
-
Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition
-
Schwarzer M, Makki K, Storelli G, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 2016;351:854-7.
-
(2016)
Science
, vol.351
, pp. 854-857
-
-
Schwarzer, M.1
Makki, K.2
Storelli, G.3
-
62
-
-
84959476433
-
Sialylated milk Oligosaccharides promote Microbiota-Dependent growth in models of Infant Undernutrition
-
Charbonneau MR, O'Donnell D, Blanton LV, et al. Sialylated milk Oligosaccharides promote Microbiota-Dependent growth in models of Infant Undernutrition. Cell 2016;164:859-71.
-
(2016)
Cell
, vol.164
, pp. 859-871
-
-
Charbonneau, M.R.1
O'Donnell, D.2
Blanton, L.V.3
-
63
-
-
85014745347
-
Microbes and diet-Induced Obesity: Fast, Cheap, and out of Control
-
Turnbaugh PJ. Microbes and diet-Induced Obesity: Fast, Cheap, and Out of Control. Cell Host Microbe 2017;21:278-81.
-
(2017)
Cell Host Microbe
, vol.21
, pp. 278-281
-
-
Turnbaugh, P.J.1
-
64
-
-
85018198613
-
Role of the Gut Microbiome in the pathogenesis of obesity and Obesity-Related metabolic dysfunction
-
Bouter KE, van Raalte DH, Groen AK, et al. Role of the Gut Microbiome in the pathogenesis of obesity and Obesity-Related metabolic dysfunction. Gastroenterology 2017;152:1671-8.
-
(2017)
Gastroenterology
, vol.152
, pp. 1671-1678
-
-
Bouter, K.E.1
Van Raalte, D.H.2
Groen, A.K.3
-
65
-
-
84883478660
-
Gut Microbiota from twins discordant for obesity modulate metabolism in mice
-
Ridaura VK, Faith JJ, Rey FE, et al. Gut Microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341:1241214.
-
(2013)
Science
, vol.341
, pp. 1241214
-
-
Ridaura, V.K.1
Faith, J.J.2
Rey, F.E.3
-
66
-
-
84986596815
-
Looking for a signal in the noise: Revisiting obesity and the microbiome
-
Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. MBio 2016;7:e01018-16.
-
(2016)
MBio
, vol.7
, pp. e01018-e01116
-
-
Sze, M.A.1
Schloss, P.D.2
-
67
-
-
84883110880
-
Richness of human gut microbiome correlates with metabolic markers
-
Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature 2013;500:541-6.
-
(2013)
Nature
, vol.500
, pp. 541-546
-
-
Le Chatelier, E.1
Nielsen, T.2
Qin, J.3
-
68
-
-
84978081339
-
Human gut microbes impact host serum metabolome and insulin sensitivity
-
Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016;535:376-81.
-
(2016)
Nature
, vol.535
, pp. 376-381
-
-
Pedersen, H.K.1
Gudmundsdottir, V.2
Nielsen, H.B.3
-
69
-
-
84866738529
-
Transfer of intestinal Microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome
-
Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal Microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012;143:913-6.
-
(2012)
Gastroenterology
, vol.143
, pp. 913-916
-
-
Vrieze, A.1
Van Nood, E.2
Holleman, F.3
-
70
-
-
84978328160
-
Weight gain after fecal microbiota transplantation
-
Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis 2015;2:ofv004.
-
(2015)
Open Forum Infect Dis
, vol.2
, pp. ofv004
-
-
Alang, N.1
Kelly, C.R.2
-
71
-
-
84876139394
-
Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity
-
Liou AP, Paziuk M, Luevano J-M, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 2013;5:178ra41.
-
(2013)
Sci Transl Med
, vol.5
, pp. 178ra41
-
-
Liou, A.P.1
Paziuk, M.2
Luevano, J.-M.3
-
72
-
-
84878465280
-
Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity
-
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013;110:9066-71.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 9066-9071
-
-
Everard, A.1
Belzer, C.2
Geurts, L.3
-
73
-
-
84960253261
-
Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology
-
Dao MC, Everard A, Aron-Wisnewsky J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016;65:426-36.
-
(2016)
Gut
, vol.65
, pp. 426-436
-
-
Dao, M.C.1
Everard, A.2
Aron-Wisnewsky, J.3
-
74
-
-
84997701899
-
A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice
-
Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med 2017;23:107-13.
-
(2017)
Nat Med
, vol.23
, pp. 107-113
-
-
Plovier, H.1
Everard, A.2
Druart, C.3
-
75
-
-
84897960120
-
An increase in the Akkermansia spp. Population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice
-
Shin NR, Lee JC, Lee HY, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014;63:727-35.
-
(2014)
Gut
, vol.63
, pp. 727-735
-
-
Shin, N.R.1
Lee, J.C.2
Lee, H.Y.3
-
76
-
-
85019733547
-
Targeting the gut microbiota with inulin-type fructans: Preclinical demonstration of a novel approach in the management of endothelial dysfunction
-
Epub ahead of print: 4 April 2017
-
Catry E, Bindels LB, Tailleux A, et al. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 2017 (Epub ahead of print: 4 April 2017).
-
(2017)
Gut
-
-
Catry, E.1
Bindels, L.B.2
Tailleux, A.3
-
77
-
-
84964696945
-
Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome
-
Roopchand DE, Carmody RN, Kuhn P, et al. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 2015;64:2847-58.
-
(2015)
Diabetes
, vol.64
, pp. 2847-2858
-
-
Roopchand, D.E.1
Carmody, R.N.2
Kuhn, P.3
-
78
-
-
84864722033
-
Gut Microbiota composition correlates with diet and health in the elderly
-
Claesson MJ, Jeffery IB, Conde S, et al. Gut Microbiota composition correlates with diet and health in the elderly. Nature 2012;488:178-84.
-
(2012)
Nature
, vol.488
, pp. 178-184
-
-
Claesson, M.J.1
Jeffery, I.B.2
Conde, S.3
-
79
-
-
84954099831
-
Diet-induced extinctions in the gut Microbiota compound over generations
-
Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut Microbiota compound over generations. Nature 2016;529:212-5.
-
(2016)
Nature
, vol.529
, pp. 212-215
-
-
Sonnenburg, E.D.1
Smits, S.A.2
Tikhonov, M.3
-
80
-
-
78751580602
-
Dominant and diet-responsive groups of bacteria within the human colonic Microbiota
-
Walker AW, Ince J, Duncan SH, et al. Dominant and diet-responsive groups of bacteria within the human colonic Microbiota. Isme J 2011;5:220-30.
-
(2011)
Isme J
, vol.5
, pp. 220-230
-
-
Walker, A.W.1
Ince, J.2
Duncan, S.H.3
-
81
-
-
85009377539
-
Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions
-
Griffin NW, Ahern PP, Cheng J, et al. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe 2017;21:84-96.
-
(2017)
Cell Host Microbe
, vol.21
, pp. 84-96
-
-
Griffin, N.W.1
Ahern, P.P.2
Cheng, J.3
-
82
-
-
85016260961
-
Persistent microbiome alterations modulate the rate of post-dieting weight regain
-
Thaiss CA, Itav S, Rothschild D, et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 2016:544-51.
-
(2016)
Nature
, pp. 544-551
-
-
Thaiss, C.A.1
Itav, S.2
Rothschild, D.3
-
83
-
-
84949491459
-
Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella
-
Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 2015;22:971-82.
-
(2015)
Cell Metab
, vol.22
, pp. 971-982
-
-
Kovatcheva-Datchary, P.1
Nilsson, A.2
Akrami, R.3
-
84
-
-
84992363298
-
Stable engraftment of bifidobacterium longum AH1206 in the human gut depends on Individualized features of the resident microbiome
-
Maldonado-Gómez MX, Martínez I, Bottacini F, et al. Stable engraftment of bifidobacterium longum AH1206 in the human gut depends on Individualized features of the resident microbiome. Cell Host Microbe 2016;20:515-26.
-
(2016)
Cell Host Microbe
, vol.20
, pp. 515-526
-
-
Maldonado-Gómez, M.X.1
Martínez, I.2
Bottacini, F.3
-
85
-
-
84930649544
-
Identifying personal microbiomes using metagenomic codes
-
Franzosa EA, Huang K, Meadow JF, et al. Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A 2015;112:E2930-8.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E2930-E2938
-
-
Franzosa, E.A.1
Huang, K.2
Meadow, J.F.3
-
86
-
-
84947812071
-
Personalized nutrition by prediction of glycemic responses
-
Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic responses. Cell 2015;163:1079-94.
-
(2015)
Cell
, vol.163
, pp. 1079-1094
-
-
Zeevi, D.1
Korem, T.2
Zmora, N.3
-
87
-
-
84942870086
-
The gut microbiome contributes to a substantial proportion of the variation in blood lipids
-
Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 2015;117:817-24.
-
(2015)
Circ Res
, vol.117
, pp. 817-824
-
-
Fu, J.1
Bonder, M.J.2
Cenit, M.C.3
-
88
-
-
84908325271
-
Artificial sweeteners induce glucose intolerance by altering the gut Microbiota
-
Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut Microbiota. Nature 2014;514:181-6.
-
(2014)
Nature
, vol.514
, pp. 181-186
-
-
Suez, J.1
Korem, T.2
Zeevi, D.3
-
89
-
-
77954771583
-
Artificial sweeteners: A systematic review of metabolic effects in youth
-
Brown RJ, de Banate MA, Rother KI. Artificial sweeteners: a systematic review of metabolic effects in youth. Int J Pediatr Obes 2010;5:305-12.
-
(2010)
Int J Pediatr Obes
, vol.5
, pp. 305-312
-
-
Brown, R.J.1
De Banate, M.A.2
Rother, K.I.3
-
90
-
-
84924301510
-
Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome
-
Chassaing B, Koren O, Goodrich JK, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015;519:92-6.
-
(2015)
Nature
, vol.519
, pp. 92-96
-
-
Chassaing, B.1
Koren, O.2
Goodrich, J.K.3
-
91
-
-
85024388141
-
Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation
-
Chassaing B, Van de Wiele T, De Bodt J, et al. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017;66:1414-1427.
-
(2017)
Gut
, vol.66
, pp. 1414-1427
-
-
Chassaing, B.1
Van De Wiele, T.2
De Bodt, J.3
-
92
-
-
85009230875
-
Dietary Emulsifier-Induced Low-Grade inflammation promotes Colon carcinogenesis
-
Viennois E, Merlin D, Gewirtz AT, et al. Dietary Emulsifier-Induced Low-Grade inflammation promotes Colon carcinogenesis. Cancer Res 2017;77:27-40.
-
(2017)
Cancer Res
, vol.77
, pp. 27-40
-
-
Viennois, E.1
Merlin, D.2
Gewirtz, A.T.3
-
93
-
-
84992533219
-
High-level adherence to a mediterranean diet beneficially impacts the gut microbiota and associated metabolome
-
De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 2016;65:1812-21.
-
(2016)
Gut
, vol.65
, pp. 1812-1821
-
-
De Filippis, F.1
Pellegrini, N.2
Vannini, L.3
-
94
-
-
84955613013
-
Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production
-
Wu GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut 2016;65:63-72.
-
(2016)
Gut
, vol.65
, pp. 63-72
-
-
Wu, G.D.1
Compher, C.2
Chen, E.Z.3
-
95
-
-
85027371385
-
The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level
-
Epub ahead of print: 30 Mar 2017
-
Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2017 (Epub ahead of print: 30 Mar 2017).
-
(2017)
Gut
-
-
Barton, W.1
Penney, N.C.2
Cronin, O.3
|