메뉴 건너뛰기




Volumn 1417, Issue 1, 2016, Pages 35-56

Mesenchymal stem cells and their immunosuppressive role in transplantation tolerance

Author keywords

Immunosuppression; MSC; T cells; Therapy; Tolerance; Transplantation

Indexed keywords

5' NUCLEOTIDASE; HLA DR ANTIGEN;

EID: 85023177574     PISSN: 00778923     EISSN: 17496632     Source Type: Journal    
DOI: 10.1111/nyas.13364     Document Type: Review
Times cited : (30)

References (178)
  • 1
    • 84958677950 scopus 로고    scopus 로고
    • Transplantation tolerance—a historical introduction
    • Brent, L. 2016. Transplantation tolerance—a historical introduction. Immunology 147: 267–268.
    • (2016) Immunology , vol.147 , pp. 267-268
    • Brent, L.1
  • 2
    • 0030909968 scopus 로고    scopus 로고
    • The discovery of immunologic tolerance
    • Brent, L. 1997. The discovery of immunologic tolerance. Hum. Immunol. 52: 75–81.
    • (1997) Hum. Immunol. , vol.52 , pp. 75-81
    • Brent, L.1
  • 3
    • 79956025374 scopus 로고    scopus 로고
    • Transplant tolerance: Bench to bedside— 26th annual Samuel Jason Mixter Lecture
    • Sachs, D.H. 2011. Transplant tolerance: bench to bedside— 26th annual Samuel Jason Mixter Lecture. Arch. Surg. 146: 501–505.
    • (2011) Arch. Surg. , vol.146 , pp. 501-505
    • Sachs, D.H.1
  • 4
    • 0141841766 scopus 로고    scopus 로고
    • Transplantation tolerance: A journey from ignorance to memory
    • Lakkis, F.G. 2003. Transplantation tolerance: a journey from ignorance to memory. Nephrol. Dial. Transplant. 18: 1979–1982.
    • (2003) Nephrol. Dial. Transplant. , vol.18 , pp. 1979-1982
    • Lakkis, F.G.1
  • 5
    • 1342265785 scopus 로고    scopus 로고
    • Routes to transplant tolerance versus rejection; the role of cytokines
    • Walsh, P.T., T.B. Strom & L.A. Turka. 2004. Routes to transplant tolerance versus rejection; the role of cytokines. Immunity 20: 121–131.
    • (2004) Immunity , vol.20 , pp. 121-131
    • Walsh, P.T.1    Strom, T.B.2    Turka, L.A.3
  • 6
    • 77957583768 scopus 로고    scopus 로고
    • Tolerance: An overview and perspectives
    • Waldmann, H. 2010. Tolerance: an overview and perspectives. Nat. Rev. Nephrol. 6: 569–576.
    • (2010) Nat. Rev. Nephrol. , vol.6 , pp. 569-576
    • Waldmann, H.1
  • 7
    • 80054866680 scopus 로고    scopus 로고
    • Tolerogenic dendritic cells and their role in transplantation
    • Ezzelarab, M. & A.W. Thomson. 2011. Tolerogenic dendritic cells and their role in transplantation. Semin. Immunol. 23: 252–263.
    • (2011) Semin. Immunol. , vol.23 , pp. 252-263
    • Ezzelarab, M.1    Thomson, A.W.2
  • 8
    • 84861568296 scopus 로고    scopus 로고
    • Regulatory immune cells in transplantation
    • Wood, K.J., A. Bushell & J. Hester 2012. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12: 417– 430.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 417-430
    • Wood, K.J.1    Bushell, A.2    Hester, J.3
  • 10
    • 84878645678 scopus 로고    scopus 로고
    • Transplant tolerance: New insights and strategies for long-term allograft acceptance
    • Ruiz, P., P. Maldonado, Y. Hidalgo, et al. 2013. Transplant tolerance: new insights and strategies for long-term allograft acceptance. Clin. Dev. Immunol. 2013: 210506.
    • (2013) Clin. Dev. Immunol. , vol.2013
    • Ruiz, P.1    Maldonado, P.2    Hidalgo, Y.3
  • 11
    • 84929353372 scopus 로고    scopus 로고
    • Immunoregulation by mesenchymal stem cells: Biological aspects and clinical applications
    • Castro-Manrreza, M.E. & J.J. Montesinos. 2015. Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J. Immunol. Res. 2015: 394917
    • (2015) J. Immunol. Res. , vol.2015
    • Castro-Manrreza, M.E.1    Montesinos, J.J.2
  • 12
    • 33747839997 scopus 로고    scopus 로고
    • Mesenchymal stem cells in immunoregulation
    • Chen, X., M.A. Armstrong & G. Li. 2006. Mesenchymal stem cells in immunoregulation. Immunol. Cell Biol. 84: 413–421.
    • (2006) Immunol. Cell Biol. , vol.84 , pp. 413-421
    • Chen, X.1    Armstrong, M.A.2    Li, G.3
  • 14
    • 33745503987 scopus 로고    scopus 로고
    • Mesenchymal stem cells reside in virtually all post-natal organs and tissues
    • da Silva Meirelles, L., P.C. Chagastelles & N.B. Nardi. 2006. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119(Pt 11): 2204–2213.
    • (2006) J. Cell Sci. , vol.119 , pp. 2204-2213
    • da Silva Meirelles, L.1    Chagastelles, P.C.2    Nardi, N.B.3
  • 15
    • 33746424373 scopus 로고    scopus 로고
    • Mesenchymal stem cells as trophic mediators
    • Caplan, A.I. & J.E. Dennis. 2006. Mesenchymal stem cells as trophic mediators. J. Cell Biochem. 98: 1076–1084.
    • (2006) J. Cell Biochem. , vol.98 , pp. 1076-1084
    • Caplan, A.I.1    Dennis, J.E.2
  • 16
    • 84901477349 scopus 로고    scopus 로고
    • Concise review: The surface markers and identity of human mesenchymal stem cells
    • Lv, F.J., R.S. Tuan, K.M. Cheung & V.Y. Leung. 2014. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32: 1408–1419.
    • (2014) Stem Cells , vol.32 , pp. 1408-1419
    • Lv, F.J.1    Tuan, R.S.2    Cheung, K.M.3    Leung, V.Y.4
  • 17
    • 84928004453 scopus 로고    scopus 로고
    • Characterization of menstrual stem cells: Angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells
    • Alcayaga-Miranda, F., J. Cuenca, P. Luz-Crawford, et al. 2015. Characterization of menstrual stem cells: angiogenic effect, migration and hematopoietic stem cell support in comparison with bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 6: 32.
    • (2015) Stem Cell Res. Ther. , vol.6 , pp. 32
    • Alcayaga-Miranda, F.1    Cuenca, J.2    Luz-Crawford, P.3
  • 18
    • 27944435821 scopus 로고    scopus 로고
    • Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement
    • Horwitz, E.M., K. Le Blanc, M. Dominici, et al. 2005. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7: 393–395.
    • (2005) Cytotherapy , vol.7 , pp. 393-395
    • Horwitz, E.M.1    Le Blanc, K.2    Dominici, M.3
  • 19
    • 0041854545 scopus 로고    scopus 로고
    • Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells
    • discussion 702–703
    • Mahmood, A., D. Lu, M. Lu & M. Chopp. 2003. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53: 697–702 discussion 702–703.
    • (2003) Neurosurgery , vol.53 , pp. 697-702
    • Mahmood, A.1    Lu, D.2    Lu, M.3    Chopp, M.4
  • 21
    • 84881260492 scopus 로고    scopus 로고
    • Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation
    • Stagg, J. & J. Galipeau. 2013. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr. Mol. Med. 13: 856–867.
    • (2013) Curr. Mol. Med. , vol.13 , pp. 856-867
    • Stagg, J.1    Galipeau, J.2
  • 22
    • 38949183675 scopus 로고    scopus 로고
    • Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2
    • Spaggiari, G.M., A. Capobianco, H. Abdelrazik, et al. 2008. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111: 1327–1333.
    • (2008) Blood , vol.111 , pp. 1327-1333
    • Spaggiari, G.M.1    Capobianco, A.2    Abdelrazik, H.3
  • 23
    • 80053153051 scopus 로고    scopus 로고
    • Mesenchymal stem cell inhibition of T-helper 17 cell-differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor
    • Duffy, M.M., J. Pindjakova, S.A. Hanley, et al. 2011. Mesenchymal stem cell inhibition of T-helper 17 cell-differentiation is triggered by cell–cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur. J. Immunol. 41: 2840–2851.
    • (2011) Eur. J. Immunol. , vol.41 , pp. 2840-2851
    • Duffy, M.M.1    Pindjakova, J.2    Hanley, S.A.3
  • 24
    • 70449527554 scopus 로고    scopus 로고
    • Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages
    • Kim, J. & P. Hematti. 2009. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 37: 1445–1453.
    • (2009) Exp. Hematol. , vol.37 , pp. 1445-1453
    • Kim, J.1    Hematti, P.2
  • 25
    • 77949537626 scopus 로고    scopus 로고
    • Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile
    • Maggini, J., G. Mirkin, I. Bognanni, et al. 2010. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5: e9252.
    • (2010) Plos One , vol.5
    • Maggini, J.1    Mirkin, G.2    Bognanni, I.3
  • 26
    • 78149335954 scopus 로고    scopus 로고
    • Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing
    • Zhang, Q.Z., W.R. Su, S.H. Shi, et al. 2010. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28: 1856–1868.
    • (2010) Stem Cells , vol.28 , pp. 1856-1868
    • Zhang, Q.Z.1    Su, W.R.2    Shi, S.H.3
  • 27
    • 84856960632 scopus 로고    scopus 로고
    • Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation
    • Francois, M., R. Romieu-Mourez, M. Li & J. Galipeau. 2012. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol. Ther. 20: 187–195.
    • (2012) Mol. Ther. , vol.20 , pp. 187-195
    • Francois, M.1    Romieu-Mourez, R.2    Li, M.3    Galipeau, J.4
  • 28
    • 78650673843 scopus 로고    scopus 로고
    • Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation
    • Cutler, A.J., V. Limbani, J. Girdlestone & C.V. Navarrete. 2010. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. J. Immunol. 185: 6617–6623.
    • (2010) J. Immunol. , vol.185 , pp. 6617-6623
    • Cutler, A.J.1    Limbani, V.2    Girdlestone, J.3    Navarrete, C.V.4
  • 30
    • 34547903606 scopus 로고    scopus 로고
    • Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism
    • Djouad, F., L.M. Charbonnier, C. Bouffi, et al. 2007. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells 25: 2025–2032.
    • (2007) Stem Cells , vol.25 , pp. 2025-2032
    • Djouad, F.1    Charbonnier, L.M.2    Bouffi, C.3
  • 31
    • 69249227552 scopus 로고    scopus 로고
    • MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: Central role of MSC-derived prostaglandin E2
    • Spaggiari, G.M., H. Abdelrazik, F. Becchetti & L. Moretta. 2009. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 113: 6576–6583.
    • (2009) Blood , vol.113 , pp. 6576-6583
    • Spaggiari, G.M.1    Abdelrazik, H.2    Becchetti, F.3    Moretta, L.4
  • 32
    • 37349075167 scopus 로고    scopus 로고
    • Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation
    • English, K., F.P. Barry & B.P. Mahon. 2008. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol. Lett. 115: 50– 58.
    • (2008) Immunol. Lett. , vol.115 , pp. 50-58
    • English, K.1    Barry, F.P.2    Mahon, B.P.3
  • 33
    • 59449096601 scopus 로고    scopus 로고
    • Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population
    • Zhang, B., R. Liu, D. Shi, et al. 2009. Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood 113: 46–57.
    • (2009) Blood , vol.113 , pp. 46-57
    • Zhang, B.1    Liu, R.2    Shi, D.3
  • 34
    • 18544371666 scopus 로고    scopus 로고
    • Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells
    • Jiang, X.X., Y. Zhang, B. Liu, et al. 2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120– 4126.
    • (2005) Blood , vol.105 , pp. 4120-4126
    • Jiang, X.X.1    Zhang, Y.2    Liu, B.3
  • 35
    • 84929376541 scopus 로고    scopus 로고
    • Human bone marrow-derived mesenchymal stromal cells differentially inhibit cytokine production by peripheral blood monocytes subpopulations and myeloid dendritic cells
    • Laranjeira, P., J. Gomes, S. Pedreiro, et al. 2015. Human bone marrow-derived mesenchymal stromal cells differentially inhibit cytokine production by peripheral blood monocytes subpopulations and myeloid dendritic cells. Stem Cells Int. 2015: 819084.
    • (2015) Stem Cells Int , vol.2015
    • Laranjeira, P.1    Gomes, J.2    Pedreiro, S.3
  • 36
    • 13544249606 scopus 로고    scopus 로고
    • Human mesenchymal stem cells modulate allogeneic immune cell responses
    • Aggarwal, S. & M.F. Pittenger. 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815–1822.
    • (2005) Blood , vol.105 , pp. 1815-1822
    • Aggarwal, S.1    Pittenger, M.F.2
  • 37
    • 78149483011 scopus 로고    scopus 로고
    • Inhibition of immune synapse by altered dendritic cell actin distribution: A new pathway of mesenchymal stem cell immune regulation
    • Aldinucci, A., L. Rizzetto, L. Pieri, et al. 2010. Inhibition of immune synapse by altered dendritic cell actin distribution: a new pathway of mesenchymal stem cell immune regulation. J. Immunol. 185: 5102–5110.
    • (2010) J. Immunol. , vol.185 , pp. 5102-5110
    • Aldinucci, A.1    Rizzetto, L.2    Pieri, L.3
  • 38
    • 47249117877 scopus 로고    scopus 로고
    • The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function
    • Ramasamy, R., C.K. Tong, H.F. Seow, et al. 2008. The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell. Immunol. 251: 131–136.
    • (2008) Cell. Immunol. , vol.251 , pp. 131-136
    • Ramasamy, R.1    Tong, C.K.2    Seow, H.F.3
  • 39
    • 0033824164 scopus 로고    scopus 로고
    • Mesenchymal stem cells: Biology and potential clinical uses
    • Deans, R.J. & A.B. Moseley. 2000. Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28: 875– 884.
    • (2000) Exp. Hematol. , vol.28 , pp. 875-884
    • Deans, R.J.1    Moseley, A.B.2
  • 40
    • 0042740515 scopus 로고    scopus 로고
    • Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex
    • Le Blanc, K., L. Tammik, B. Sundberg, et al. 2003. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57: 11–20.
    • (2003) Scand. J. Immunol. , vol.57 , pp. 11-20
    • Le Blanc, K.1    Tammik, L.2    Sundberg, B.3
  • 41
    • 33746889097 scopus 로고    scopus 로고
    • Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells
    • Krampera, M., L. Cosmi, R. Angeli, et al. 2006. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24: 386–398.
    • (2006) Stem Cells , vol.24 , pp. 386-398
    • Krampera, M.1    Cosmi, L.2    Angeli, R.3
  • 42
    • 68349141141 scopus 로고    scopus 로고
    • Mesenchymal cells inhibit expansion but not cytotoxicity exerted by gamma-delta T cells
    • Petrini, I., S. Pacini, M. Petrini, et al. 2009. Mesenchymal cells inhibit expansion but not cytotoxicity exerted by gamma-delta T cells. Eur. J. Clin. Invest. 39: 813–818.
    • (2009) Eur. J. Clin. Invest. , vol.39 , pp. 813-818
    • Petrini, I.1    Pacini, S.2    Petrini, M.3
  • 43
    • 0038204193 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide
    • Krampera, M., S. Glennie, J. Dyson, et al. 2003. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722–3729.
    • (2003) Blood , vol.101 , pp. 3722-3729
    • Krampera, M.1    Glennie, S.2    Dyson, J.3
  • 44
    • 0242410394 scopus 로고    scopus 로고
    • Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals
    • Djouad, F., P. Plence, C. Bony, et al. 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837–3844.
    • (2003) Blood , vol.102 , pp. 3837-3844
    • Djouad, F.1    Plence, P.2    Bony, C.3
  • 45
    • 0037093058 scopus 로고    scopus 로고
    • Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli
    • Di Nicola, M., C. Carlo-Stella, M. Magni, et al. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838–3843.
    • (2002) Blood , vol.99 , pp. 3838-3843
    • Di Nicola, M.1    Carlo-Stella, C.2    Magni, M.3
  • 46
    • 15944376184 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells
    • Glennie, S., I. Soeiro, P.J. Dyson, et al. 2005. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105: 2821–2827.
    • (2005) Blood , vol.105 , pp. 2821-2827
    • Glennie, S.1    Soeiro, I.2    Dyson, P.J.3
  • 47
    • 79956276486 scopus 로고    scopus 로고
    • Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation
    • Giuliani, M., M. Fleury, A. Vernochet, et al. 2011. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation. PLoS One 6: e19988.
    • (2011) Plos One , vol.6
    • Giuliani, M.1    Fleury, M.2    Vernochet, A.3
  • 48
    • 70350536359 scopus 로고    scopus 로고
    • Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells
    • Guo, Z., C. Zheng, Z. Chen, et al. 2009. Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. Eur. J. Immunol. 39: 2840–2849.
    • (2009) Eur. J. Immunol. , vol.39 , pp. 2840-2849
    • Guo, Z.1    Zheng, C.2    Chen, Z.3
  • 49
    • 2942595706 scopus 로고    scopus 로고
    • Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation
    • Meisel, R., A. Zibert, M. Laryea, et al. 2004. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 103: 4619–4621.
    • (2004) Blood , vol.103 , pp. 4619-4621
    • Meisel, R.1    Zibert, A.2    Laryea, M.3
  • 50
    • 34547647603 scopus 로고    scopus 로고
    • Immunosuppressive effects of mesenchymal stem cells: Involvement of HLA-G
    • Nasef, A., N. Mathieu, A. Chapel, et al. 2007. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84: 231–237.
    • (2007) Transplantation , vol.84 , pp. 231-237
    • Nasef, A.1    Mathieu, N.2    Chapel, A.3
  • 52
    • 33846006154 scopus 로고    scopus 로고
    • Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells
    • Sato, K., K. Ozaki, I. Oh, et al. 2007. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109: 228–234.
    • (2007) Blood , vol.109 , pp. 228-234
    • Sato, K.1    Ozaki, K.2    Oh, I.3
  • 53
    • 77954932147 scopus 로고    scopus 로고
    • Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell
    • Lepelletier, Y., S. Lecourt, A. Renand, et al. 2010. Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells Dev. 19: 1075–1079.
    • (2010) Stem Cells Dev , vol.19 , pp. 1075-1079
    • Lepelletier, Y.1    Lecourt, S.2    Renand, A.3
  • 54
    • 84893824227 scopus 로고    scopus 로고
    • Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species
    • Su, J., X. Chen, Y. Huang, et al. 2014. Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death Differ. 21: 388–396.
    • (2014) Cell Death Differ , vol.21 , pp. 388-396
    • Su, J.1    Chen, X.2    Huang, Y.3
  • 55
    • 0033082138 scopus 로고    scopus 로고
    • Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells
    • Moriggl, R., D.J. Topham, S. Teglund, et al. 1999. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10: 249–259.
    • (1999) Immunity , vol.10 , pp. 249-259
    • Moriggl, R.1    Topham, D.J.2    Teglund, S.3
  • 56
    • 0033519278 scopus 로고    scopus 로고
    • Inhibition of T cell proliferation by macrophage tryptophan catabolism
    • Munn, D.H., E. Shafizadeh, J.T. Attwood, et al. 1999. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189: 1363–1372.
    • (1999) J. Exp. Med. , vol.189 , pp. 1363-1372
    • Munn, D.H.1    Shafizadeh, E.2    Attwood, J.T.3
  • 57
    • 84880688294 scopus 로고    scopus 로고
    • IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by d-1-methyl-tryptophan
    • Metz, R., S. Rust, J.B. Duhadaway, et al. 2012. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by d-1-methyl-tryptophan. Oncoimmunology 1: 1460–1468.
    • (2012) Oncoimmunology , vol.1 , pp. 1460-1468
    • Metz, R.1    Rust, S.2    Duhadaway, J.B.3
  • 58
    • 84958160380 scopus 로고    scopus 로고
    • Mesenchymal stromal cells disrupt mTOR-signaling and aerobic glycolysis during T-cell activation
    • Bottcher, M., A.D. Hofmann, H. Bruns, et al. 2016. Mesenchymal stromal cells disrupt mTOR-signaling and aerobic glycolysis during T-cell activation. Stem Cells 34: 516–521.
    • (2016) Stem Cells , vol.34 , pp. 516-521
    • Bottcher, M.1    Hofmann, A.D.2    Bruns, H.3
  • 59
    • 0036096843 scopus 로고    scopus 로고
    • A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response
    • Tordjman, R., Y. Lepelletier, V. Lemarchandel, et al. 2002. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat. Immunol. 3: 477–482.
    • (2002) Nat. Immunol. , vol.3 , pp. 477-482
    • Tordjman, R.1    Lepelletier, Y.2    Lemarchandel, V.3
  • 60
    • 0037313298 scopus 로고    scopus 로고
    • Semaphorins in interactions between T cells and antigen-presenting cells
    • Kikutani, H. & A. Kumanogoh 2003. Semaphorins in interactions between T cells and antigen-presenting cells. Nat. Rev. Immunol. 3: 159–167.
    • (2003) Nat. Rev. Immunol. , vol.3 , pp. 159-167
    • Kikutani, H.1    Kumanogoh, A.2
  • 61
    • 33947593728 scopus 로고    scopus 로고
    • Mesenchymal stem cells stimulate antibody secretion in human B cells
    • Rasmusson, I., K. Le Blanc, B. Sundberg & O. Ringden. 2007. Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand. J. Immunol. 65: 336–343.
    • (2007) Scand. J. Immunol. , vol.65 , pp. 336-343
    • Rasmusson, I.1    Le Blanc, K.2    Sundberg, B.3    Ringden, O.4
  • 62
    • 84885121179 scopus 로고    scopus 로고
    • EphB and Ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells
    • Nguyen, T.M., A. Arthur, J.D. Hayball & S. Gronthos. 2013. EphB and Ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells. Stem Cells Dev. 22: 2751–2764.
    • (2013) Stem Cells Dev , vol.22 , pp. 2751-2764
    • Nguyen, T.M.1    Arthur, A.2    Hayball, J.D.3    Gronthos, S.4
  • 63
    • 84873743220 scopus 로고    scopus 로고
    • Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells
    • Gu, Y.Z., Q. Xue, Y.J. Chen, et al. 2013. Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells. Hum. Immunol. 74: 267–276.
    • (2013) Hum. Immunol. , vol.74 , pp. 267-276
    • Gu, Y.Z.1    Xue, Q.2    Chen, Y.J.3
  • 64
    • 0026735918 scopus 로고
    • Constitutive expression of CD69 in interspecies T-cell hybrids and locus assignment to human chromosome 12
    • Cambiaggi, C., M.T. Scupoli, T. Cestari, et al. 1992. Constitutive expression of CD69 in interspecies T-cell hybrids and locus assignment to human chromosome 12. Immunogenetics 36: 117–120.
    • (1992) Immunogenetics , vol.36 , pp. 117-120
    • Cambiaggi, C.1    Scupoli, M.T.2    Cestari, T.3
  • 65
    • 0029033861 scopus 로고
    • The retinoblastoma protein and cell cycle control
    • Weinberg, R.A. 1995. The retinoblastoma protein and cell cycle control. Cell 81: 323–330.
    • (1995) Cell , vol.81 , pp. 323-330
    • Weinberg, R.A.1
  • 66
    • 0037376168 scopus 로고    scopus 로고
    • Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells
    • Stacey, D.W. 2003. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Opin. Cell Biol. 15: 158–163.
    • (2003) Curr. Opin. Cell Biol. , vol.15 , pp. 158-163
    • Stacey, D.W.1
  • 67
    • 0026583746 scopus 로고
    • Cyclin A is required at two points in the human cell cycle
    • Pagano, M., R. Pepperkok, F. Verde, et al. 1992. Cyclin A is required at two points in the human cell cycle. EMBO J. 11: 961–971.
    • (1992) EMBO J , vol.11 , pp. 961-971
    • Pagano, M.1    Pepperkok, R.2    Verde, F.3
  • 68
    • 84930380040 scopus 로고    scopus 로고
    • Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets
    • Pianta, S., P. Bonassi Signoroni, I. Muradore, et al. 2015. Amniotic membrane mesenchymal cells-derived factors skew T cell polarization toward Treg and downregulate Th1 and Th17 cells subsets. Stem Cell Rev. 11: 394–407.
    • (2015) Stem Cell Rev , vol.11 , pp. 394-407
    • Pianta, S.1    Bonassi Signoroni, P.2    Muradore, I.3
  • 69
    • 77954728855 scopus 로고    scopus 로고
    • Mesenchymal stem cells protect breast cancer cells through regulatory T cells: Role of mesenchymal stem cell-derived TGF-beta
    • Patel, S.A., J.R. Meyer, S.J. Greco, et al. 2010. Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol. 184: 5885–5894.
    • (2010) J. Immunol. , vol.184 , pp. 5885-5894
    • Patel, S.A.1    Meyer, J.R.2    Greco, S.J.3
  • 70
  • 71
    • 33646577466 scopus 로고    scopus 로고
    • Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells
    • Bettelli, E., Y. Carrier, W. Gao, et al. 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235– 238.
    • (2006) Nature , vol.441 , pp. 235-238
    • Bettelli, E.1    Carrier, Y.2    Gao, W.3
  • 72
    • 84866458557 scopus 로고    scopus 로고
    • Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway
    • Luz-Crawford, P., D. Noel, X. Fernandez, et al. 2012. Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway. PLoS One 7: e45272.
    • (2012) Plos One , vol.7
    • Luz-Crawford, P.1    Noel, D.2    Fernandez, X.3
  • 73
    • 78650827566 scopus 로고    scopus 로고
    • Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression
    • Ge, W., J. Jiang, J. Arp, et al. 2010. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation 90: 1312–1320.
    • (2010) Transplantation , vol.90 , pp. 1312-1320
    • Ge, W.1    Jiang, J.2    Arp, J.3
  • 74
    • 0036790338 scopus 로고    scopus 로고
    • T cell apoptosis by tryptophan catabolism
    • Fallarino, F., U. Grohmann, C. Vacca, et al. 2002. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9: 1069–1077.
    • (2002) Cell Death Differ , vol.9 , pp. 1069-1077
    • Fallarino, F.1    Grohmann, U.2    Vacca, C.3
  • 75
    • 77956215701 scopus 로고    scopus 로고
    • Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype
    • Ghannam, S., J. Pene, G. Moquet-Torcy, et al. 2010. Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J. Immunol. 185: 302–312.
    • (2010) J. Immunol. , vol.185 , pp. 302-312
    • Ghannam, S.1    Pene, J.2    Moquet-Torcy, G.3
  • 76
    • 70449530422 scopus 로고    scopus 로고
    • T helper 17 cells promote cytotoxic T cell activation in tumor immunity
    • Martin-Orozco, N., P. Muranski, Y. Chung, et al. 2009. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31: 787–798.
    • (2009) Immunity , vol.31 , pp. 787-798
    • Martin-Orozco, N.1    Muranski, P.2    Chung, Y.3
  • 77
    • 84864994888 scopus 로고    scopus 로고
    • Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion
    • Qu, X., X. Liu, K. Cheng, et al. 2012. Mesenchymal stem cells inhibit Th17 cell differentiation by IL-10 secretion. Exp. Hematol. 40: 761–770.
    • (2012) Exp. Hematol. , vol.40 , pp. 761-770
    • Qu, X.1    Liu, X.2    Cheng, K.3
  • 78
    • 77749279645 scopus 로고    scopus 로고
    • Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients
    • Carrion, F., E. Nova, C. Ruiz, et al. 2010. Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus 19: 317–322.
    • (2010) Lupus , vol.19 , pp. 317-322
    • Carrion, F.1    Nova, E.2    Ruiz, C.3
  • 79
    • 62449102751 scopus 로고    scopus 로고
    • Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice
    • Zhou, K., H. Zhang, O. Jin, et al. 2008. Transplantation of human bone marrow mesenchymal stem cell ameliorates the autoimmune pathogenesis in MRL/lpr mice. Cell. Mol. Immunol. 5: 417–424.
    • (2008) Cell. Mol. Immunol. , vol.5 , pp. 417-424
    • Zhou, K.1    Zhang, H.2    Jin, O.3
  • 81
    • 58149216715 scopus 로고    scopus 로고
    • Th memory for interleukin-17 expression is stable in vivo
    • Lexberg, M.H., A. Taubner, A. Forster, et al. 2008. Th memory for interleukin-17 expression is stable in vivo. Eur. J. Immunol. 38: 2654–2664.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 2654-2664
    • Lexberg, M.H.1    Taubner, A.2    Forster, A.3
  • 82
    • 70349881103 scopus 로고    scopus 로고
    • Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner
    • Rafei, M., P.M. Campeau, A. Aguilar-Mahecha, et al. 2009. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J. Immunol. 182: 5994–6002.
    • (2009) J. Immunol. , vol.182 , pp. 5994-6002
    • Rafei, M.1    Campeau, P.M.2    Aguilar-Mahecha, A.3
  • 83
    • 84925537215 scopus 로고    scopus 로고
    • Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-γ-mediated SOCS3 activation
    • Liu, X., S. Ren, X. Qu, et al. 2015. Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-γ-mediated SOCS3 activation. Immunol. Res. 61: 219–229.
    • (2015) Immunol. Res. , vol.61 , pp. 219-229
    • Liu, X.1    Ren, S.2    Qu, X.3
  • 84
    • 33947162110 scopus 로고    scopus 로고
    • Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation
    • Laurence, A., C.M. Tato, T.S. Davidson, et al. 2007. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26: 371–381.
    • (2007) Immunity , vol.26 , pp. 371-381
    • Laurence, A.1    Tato, C.M.2    Davidson, T.S.3
  • 86
    • 84939543193 scopus 로고    scopus 로고
    • Foxp3-modified bone marrow mesenchymal stem cells promotes liver allograft tolerance through the generation of regulatory T cells in rats
    • Qi, H., G. Chen, Y. Huang, et al. 2015. Foxp3-modified bone marrow mesenchymal stem cells promotes liver allograft tolerance through the generation of regulatory T cells in rats. J. Transl. Med. 13: 274.
    • (2015) J. Transl. Med. , vol.13 , pp. 274
    • Qi, H.1    Chen, G.2    Huang, Y.3
  • 87
    • 28744436422 scopus 로고    scopus 로고
    • Human mesenchymal stem cells and cyclosporin A exert a synergistic suppressive effect on in vitro activation of alloantigen-specific cytotoxic lymphocytes
    • Maccario, R., A. Moretta, A. Cometa, et al. 2005. Human mesenchymal stem cells and cyclosporin A exert a synergistic suppressive effect on in vitro activation of alloantigen-specific cytotoxic lymphocytes. Biol. Blood Marrow Transplant. 11: 1031–1032.
    • (2005) Biol. Blood Marrow Transplant. , vol.11 , pp. 1031-1032
    • Maccario, R.1    Moretta, A.2    Cometa, A.3
  • 88
    • 79956361542 scopus 로고    scopus 로고
    • Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes
    • Saldanha-Araujo, F., F.I. Ferreira, P.V. Palma, et al. 2011. Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Res. 7: 66–74.
    • (2011) Stem Cell Res , vol.7 , pp. 66-74
    • Saldanha-Araujo, F.1    Ferreira, F.I.2    Palma, P.V.3
  • 89
    • 84901826459 scopus 로고    scopus 로고
    • CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human Th17 cell function
    • Lee, J.J., H.J. Jeong, M.K. Kim, et al. 2014. CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human Th17 cell function. Purinergic Signal. 10: 357–365.
    • (2014) Purinergic Signal , vol.10 , pp. 357-365
    • Lee, J.J.1    Jeong, H.J.2    Kim, M.K.3
  • 90
    • 77950343848 scopus 로고    scopus 로고
    • Granzyme B is not required for regulatory T cell-mediated suppression of graft-versus-host disease
    • Cai, S.F., X. Cao, A. Hassan, et al. 2010. Granzyme B is not required for regulatory T cell-mediated suppression of graft-versus-host disease. Blood 115: 1669–1677.
    • (2010) Blood , vol.115 , pp. 1669-1677
    • Cai, S.F.1    Cao, X.2    Hassan, A.3
  • 91
    • 0030704726 scopus 로고    scopus 로고
    • + T-cell subset inhibits antigen-specific T-cell responses and prevents colitis
    • + T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742.
    • (1997) Nature , vol.389 , pp. 737-742
    • Groux, H.1    O’Garra, A.2    Bigler, M.3
  • 92
    • 33845942398 scopus 로고    scopus 로고
    • Th3 cells in peripheral tolerance. II. TGF-beta-transgenic Th3 cells rescue IL-2-deficient mice from autoimmunity
    • Carrier, Y., J. Yuan, V.K. Kuchroo & H.L. Weiner 2007. Th3 cells in peripheral tolerance. II. TGF-beta-transgenic Th3 cells rescue IL-2-deficient mice from autoimmunity. J. Immunol. 178: 172–178.
    • (2007) J. Immunol. , vol.178 , pp. 172-178
    • Carrier, Y.1    Yuan, J.2    Kuchroo, V.K.3    Weiner, H.L.4
  • 93
    • 84867039778 scopus 로고    scopus 로고
    • Enforced IL-10 expression confers type 1 regulatory T cell (Tr1) phenotype and function to human CD4(+) T cells
    • Andolfi, G., G. Fousteri, M. Rossetti, et al. 2012. Enforced IL-10 expression confers type 1 regulatory T cell (Tr1) phenotype and function to human CD4(+) T cells. Mol. Ther. 20: 1778–1790.
    • (2012) Mol. Ther. , vol.20 , pp. 1778-1790
    • Andolfi, G.1    Fousteri, G.2    Rossetti, M.3
  • 94
    • 0037093217 scopus 로고    scopus 로고
    • The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality
    • Taylor, P.A., C.J. Lees & B.R. Blazar. 2002. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99: 3493–3499.
    • (2002) Blood , vol.99 , pp. 3493-3499
    • Taylor, P.A.1    Lees, C.J.2    Blazar, B.R.3
  • 95
    • 84958152512 scopus 로고    scopus 로고
    • Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation
    • Luz-Crawford, P., F. Djouad, K. Toupet, et al. 2016. Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells 34: 483–492.
    • (2016) Stem Cells , vol.34 , pp. 483-492
    • Luz-Crawford, P.1    Djouad, F.2    Toupet, K.3
  • 96
    • 79955971620 scopus 로고    scopus 로고
    • The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells
    • Mougiakakos, D., R. Jitschin, C.C. Johansson, et al. 2011. The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood 117: 4826–4835.
    • (2011) Blood , vol.117 , pp. 4826-4835
    • Mougiakakos, D.1    Jitschin, R.2    Johansson, C.C.3
  • 97
    • 38349060182 scopus 로고    scopus 로고
    • Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling
    • Liotta, F., R. Angeli, L. Cosmi, et al. 2008. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells 26: 279–289.
    • (2008) Stem Cells , vol.26 , pp. 279-289
    • Liotta, F.1    Angeli, R.2    Cosmi, L.3
  • 98
    • 84872498240 scopus 로고    scopus 로고
    • Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction
    • Del Papa, B., P. Sportoletti, D. Cecchini, et al. 2013. Notch1 modulates mesenchymal stem cells mediated regulatory T-cell induction. Eur. J. Immunol. 43: 182–187.
    • (2013) Eur. J. Immunol. , vol.43 , pp. 182-187
    • Del Papa, B.1    Sportoletti, P.2    Cecchini, D.3
  • 99
    • 40749110247 scopus 로고    scopus 로고
    • + hemopoietic pro- genitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway
    • + hemopoietic pro- genitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J. Immunol. 180: 1598–1608.
    • (2008) J. Immunol. , vol.180 , pp. 1598-1608
    • Li, Y.P.1    Paczesny, S.2    Lauret, E.3
  • 100
    • 84928538044 scopus 로고    scopus 로고
    • + regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells
    • + regulatory T cells and tolerogenic dendritic cells by murine mesenchymal stromal cells. Stem Cell Res. Ther. 6: 19.
    • (2015) Stem Cell Res. Ther. , vol.6 , pp. 19
    • Cahill, E.F.1    Tobin, L.M.2    Carty, F.3
  • 101
    • 84988384591 scopus 로고    scopus 로고
    • TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated Treg induction via notch signaling
    • Rashedi, I., A. Gomez-AristizAbal, X.H. Wang, et al. 2016. TLR3 or TLR4 activation enhances mesenchymal stromal cell-mediated Treg induction via notch signaling. Stem Cells 35: 265–275.
    • (2016) Stem Cells , vol.35 , pp. 265-275
    • Rashedi, I.1    Gomez-Aristizabal, A.2    Wang, X.H.3
  • 102
    • 65649089411 scopus 로고    scopus 로고
    • Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R
    • Opitz, C.A., U.M. Litzenburger, C. Lutz, et al. 2009. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells 27: 909– 919.
    • (2009) Stem Cells , vol.27 , pp. 909-919
    • Opitz, C.A.1    Litzenburger, U.M.2    Lutz, C.3
  • 105
    • 78149439868 scopus 로고    scopus 로고
    • Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells
    • Gieseke, F., J. Bohringer, R. Bussolari, et al. 2010. Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 116: 3770–3779.
    • (2010) Blood , vol.116 , pp. 3770-3779
    • Gieseke, F.1    Bohringer, J.2    Bussolari, R.3
  • 106
    • 84883229944 scopus 로고    scopus 로고
    • Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells
    • Liu, G.Y., Y. Xu, Y. Li, et al. 2013. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy 15: 1208–1217.
    • (2013) Cytotherapy , vol.15 , pp. 1208-1217
    • Liu, G.Y.1    Xu, Y.2    Li, Y.3
  • 107
    • 78650761735 scopus 로고    scopus 로고
    • New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins
    • Sioud, M. 2011. New insights into mesenchymal stromal cell-mediated T-cell suppression through galectins. Scand. J. Immunol. 73: 79–84.
    • (2011) Scand. J. Immunol. , vol.73 , pp. 79-84
    • Sioud, M.1
  • 108
    • 9144248269 scopus 로고    scopus 로고
    • Amelioration of graft versus host disease by galectin-1
    • Baum, L.G., D.P. Blackall, S. Arias-Magallano, et al. 2003. Amelioration of graft versus host disease by galectin-1. Clin. Immunol. 109: 295–307.
    • (2003) Clin. Immunol. , vol.109 , pp. 295-307
    • Baum, L.G.1    Blackall, D.P.2    Arias-Magallano, S.3
  • 109
    • 40849083349 scopus 로고    scopus 로고
    • Activation of Tim-3–Galectin-9 pathway improves survival of fully allogeneic skin grafts
    • Wang, F., W. He, J. Yuan, et al. 2008. Activation of Tim-3–Galectin-9 pathway improves survival of fully allogeneic skin grafts. Transpl. Immunol. 19: 12–19.
    • (2008) Transpl. Immunol. , vol.19 , pp. 12-19
    • Wang, F.1    He, W.2    Yuan, J.3
  • 110
    • 84885748555 scopus 로고    scopus 로고
    • Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation
    • Gieseke, F., A. Kruchen, N. Tzaribachev, et al. 2013. Proinflammatory stimuli induce galectin-9 in human mesenchymal stromal cells to suppress T-cell proliferation. Eur. J. Immunol. 43: 2741–2749.
    • (2013) Eur. J. Immunol. , vol.43 , pp. 2741-2749
    • Gieseke, F.1    Kruchen, A.2    Tzaribachev, N.3
  • 111
    • 84897428993 scopus 로고    scopus 로고
    • Galectin-9 is a suppressor of T and B cells and predicts the immune modulatory potential of mesenchymal stromal cell preparations
    • Ungerer, C., P. Quade-Lyssy, H.H. Radeke, et al. 2014. Galectin-9 is a suppressor of T and B cells and predicts the immune modulatory potential of mesenchymal stromal cell preparations. Stem Cells Dev. 23: 755–766.
    • (2014) Stem Cells Dev , vol.23 , pp. 755-766
    • Ungerer, C.1    Quade-Lyssy, P.2    Radeke, H.H.3
  • 112
    • 85021457430 scopus 로고    scopus 로고
    • Galectin-9 is involved in immunosuppression mediated by human bone marrow-derived clonal mesenchymal stem cells
    • Kim, S.N., H.J. Lee, M.S. Jeon, et al. 2015. Galectin-9 is involved in immunosuppression mediated by human bone marrow-derived clonal mesenchymal stem cells. Immune Netw. 15: 241–251.
    • (2015) Immune Netw , vol.15 , pp. 241-251
    • Kim, S.N.1    Lee, H.J.2    Jeon, M.S.3
  • 113
    • 30044434075 scopus 로고    scopus 로고
    • The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity
    • Zhu, C., A.C. Anderson, A. Schubart, et al. 2005. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 6: 1245–1252.
    • (2005) Nat. Immunol. , vol.6 , pp. 1245-1252
    • Zhu, C.1    Anderson, A.C.2    Schubart, A.3
  • 114
    • 84856556856 scopus 로고    scopus 로고
    • Galectin-1 research in T cell immunity: Past, present and future
    • Cedeno-Laurent, F. & C.J. Dimitroff 2012. Galectin-1 research in T cell immunity: past, present and future. Clin. Immunol. 142: 107–116.
    • (2012) Clin. Immunol. , vol.142 , pp. 107-116
    • Cedeno-Laurent, F.1    Dimitroff, C.J.2
  • 115
    • 84929869291 scopus 로고    scopus 로고
    • Glucocorticoid-induced leucine zipper governs the therapeutic potential of mesenchymal stem cells by inducing a switch from pathogenic to regulatory Th17 cells in a mouse model of collagen-induced arthritis
    • Luz-Crawford, P., G. Tejedor, A.L. Mausset-Bonnefont, et al. 2015. Glucocorticoid-induced leucine zipper governs the therapeutic potential of mesenchymal stem cells by inducing a switch from pathogenic to regulatory Th17 cells in a mouse model of collagen-induced arthritis. Arthritis Rheumatol. 67: 1514–1524.
    • (2015) Arthritis Rheumatol , vol.67 , pp. 1514-1524
    • Luz-Crawford, P.1    Tejedor, G.2    Mausset-Bonnefont, A.L.3
  • 116
    • 84965083645 scopus 로고    scopus 로고
    • Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism
    • Yang, N., B. Baban, C.M. Isales & X.M. Shi. 2015. Crosstalk between bone marrow-derived mesenchymal stem cells and regulatory T cells through a glucocorticoid-induced leucine zipper/developmental endothelial locus-1-dependent mechanism. FASEB J. 29: 3954–3963.
    • (2015) FASEB J , vol.29 , pp. 3954-3963
    • Yang, N.1    Baban, B.2    Isales, C.M.3    Shi, X.M.4
  • 118
    • 84946010892 scopus 로고    scopus 로고
    • Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(–) regulatory T cells
    • Liu, Q., H. Zheng, X. Chen, et al. 2015. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(–) regulatory T cells. Cell. Mol. Immunol. 12: 708–718.
    • (2015) Cell. Mol. Immunol. , vol.12 , pp. 708-718
    • Liu, Q.1    Zheng, H.2    Chen, X.3
  • 120
    • 0347993684 scopus 로고    scopus 로고
    • Phenotypic changes in lymphocyte subpopulations in pediatric renal-transplant patients after T-cell depletion
    • Klaus, G., K. Mostert, B. Reckzeh & T.F. Mueller. 2003. Phenotypic changes in lymphocyte subpopulations in pediatric renal-transplant patients after T-cell depletion. Transplantation 76: 1719–1724.
    • (2003) Transplantation , vol.76 , pp. 1719-1724
    • Klaus, G.1    Mostert, K.2    Reckzeh, B.3    Mueller, T.F.4
  • 121
    • 84879550069 scopus 로고    scopus 로고
    • Cross-validation of IFN-γ Elispot assay for measuring alloreactive memory/effector T cell responses in renal transplant recipients
    • Bestard, O., E. Crespo, M. Stein, et al. 2013. Cross-validation of IFN-γ Elispot assay for measuring alloreactive memory/effector T cell responses in renal transplant recipients. Am. J. Transplant. 13: 1880–1890.
    • (2013) Am. J. Transplant. , vol.13 , pp. 1880-1890
    • Bestard, O.1    Crespo, E.2    Stein, M.3
  • 122
    • 0033566737 scopus 로고    scopus 로고
    • Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes
    • Heeger, P.S., N.S. Greenspan, S. Kuhlenschmidt, et al. 1999. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J. Immunol. 163: 2267–2275.
    • (1999) J. Immunol. , vol.163 , pp. 2267-2275
    • Heeger, P.S.1    Greenspan, N.S.2    Kuhlenschmidt, S.3
  • 123
    • 22844438322 scopus 로고    scopus 로고
    • Pretransplant IFN-gamma ELISPOTs are associated with posttransplant renal function in African American renal transplant recipients
    • Augustine, J.J., D.S. Siu, M.J. Clemente, et al. 2005. Pretransplant IFN-gamma ELISPOTs are associated with posttransplant renal function in African American renal transplant recipients. Am. J. Transplant. 5: 1971–1975.
    • (2005) Am. J. Transplant. , vol.5 , pp. 1971-1975
    • Augustine, J.J.1    Siu, D.S.2    Clemente, M.J.3
  • 124
    • 38949175025 scopus 로고    scopus 로고
    • Mesenchymal cells recruit and regulate T regulatory cells
    • Di Ianni, M., B. Del Papa, M. De Ioanni, et al. 2008. Mesenchymal cells recruit and regulate T regulatory cells. Exp. Hematol. 36: 309–318.
    • (2008) Exp. Hematol. , vol.36 , pp. 309-318
    • Di Ianni, M.1    Del Papa, B.2    de Ioanni, M.3
  • 125
    • 84893625865 scopus 로고    scopus 로고
    • Tissue-resident T cells, in situ immunity and transplantation
    • Turner, D.L., C.L. Gordon & D.L. Farber. 2014. Tissue-resident T cells, in situ immunity and transplantation. Immunol. Rev. 258: 150–166.
    • (2014) Immunol. Rev. , vol.258 , pp. 150-166
    • Turner, D.L.1    Gordon, C.L.2    Farber, D.L.3
  • 126
    • 84899553624 scopus 로고    scopus 로고
    • Lung niches for the generation and maintenance of tissue-resident memory T cells
    • Turner, D.L., K.L. Bickham, J.J. Thome, et al. 2014. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol. 7: 501–510.
    • (2014) Mucosal Immunol , vol.7 , pp. 501-510
    • Turner, D.L.1    Bickham, K.L.2    Thome, J.J.3
  • 127
    • 42949176306 scopus 로고    scopus 로고
    • Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation
    • Comoli, P., F. Ginevri, R. Maccario, et al. 2008. Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol. Dial. Transplant. 23: 1196–1202.
    • (2008) Nephrol. Dial. Transplant. , vol.23 , pp. 1196-1202
    • Comoli, P.1    Ginevri, F.2    Maccario, R.3
  • 128
    • 84879951356 scopus 로고    scopus 로고
    • Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1
    • Liu, O., J. Xu, G. Ding, et al. 2013. Periodontal ligament stem cells regulate B lymphocyte function via programmed cell death protein 1. Stem Cells 31: 1371–1382.
    • (2013) Stem Cells , vol.31 , pp. 1371-1382
    • Liu, O.1    Xu, J.2    Ding, G.3
  • 129
    • 84919782445 scopus 로고    scopus 로고
    • Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells
    • Rosado, M.M., M.E. Bernardo, M. Scarsella, et al. 2015. Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells Dev. 24: 93–103.
    • (2015) Stem Cells Dev , vol.24 , pp. 93-103
    • Rosado, M.M.1    Bernardo, M.E.2    Scarsella, M.3
  • 130
    • 84923217704 scopus 로고    scopus 로고
    • Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells
    • Franquesa, M., F.K. Mensah, R. Huizinga, et al. 2015. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells. Stem Cells 33: 880– 891.
    • (2015) Stem Cells , vol.33 , pp. 880-891
    • Franquesa, M.1    Mensah, F.K.2    Huizinga, R.3
  • 131
    • 64249129065 scopus 로고    scopus 로고
    • Mesenchymal stem cells suppress B-cell terminal differentiation
    • Asari, S., S. Itakura, K. Ferreri, et al. 2009. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp. Hematol. 37: 604–615.
    • (2009) Exp. Hematol. , vol.37 , pp. 604-615
    • Asari, S.1    Itakura, S.2    Ferreri, K.3
  • 132
    • 58149388233 scopus 로고    scopus 로고
    • Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction
    • Rafei, M., J. Hsieh, S. Fortier, et al. 2008. Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 112: 4991–4998.
    • (2008) Blood , vol.112 , pp. 4991-4998
    • Rafei, M.1    Hsieh, J.2    Fortier, S.3
  • 133
    • 30144440925 scopus 로고    scopus 로고
    • Human mesenchymal stem cells modulate B-cell functions
    • Corcione, A., F. Benvenuto, E. Ferretti, et al. 2006. Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367–372.
    • (2006) Blood , vol.107 , pp. 367-372
    • Corcione, A.1    Benvenuto, F.2    Ferretti, E.3
  • 134
    • 18844404360 scopus 로고    scopus 로고
    • Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway
    • Augello, A., R. Tasso, S.M. Negrini, et al. 2005. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol. 35: 1482–1490.
    • (2005) Eur. J. Immunol. , vol.35 , pp. 1482-1490
    • Augello, A.1    Tasso, R.2    Negrini, S.M.3
  • 135
    • 77956371047 scopus 로고    scopus 로고
    • Interferon-gamma-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus
    • Schena, F., C. Gambini, A. Gregorio, et al. 2010. Interferon-gamma-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis Rheum. 62: 2776–2786.
    • (2010) Arthritis Rheum , vol.62 , pp. 2776-2786
    • Schena, F.1    Gambini, C.2    Gregorio, A.3
  • 136
    • 75749108630 scopus 로고    scopus 로고
    • The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity
    • Xue, Q., X.Y. Luan, Y.Z. Gu, et al. 2010. The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity. Stem Cells Dev. 19: 27–38.
    • (2010) Stem Cells Dev , vol.19 , pp. 27-38
    • Xue, Q.1    Luan, X.Y.2    Gu, Y.Z.3
  • 137
    • 84989790738 scopus 로고    scopus 로고
    • Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-γ-treated mesenchymal stem cells
    • Hermankova, B., A. Zajicova, E. Javorkova, et al. 2016. Suppression of IL-10 production by activated B cells via a cell contact-dependent cyclooxygenase-2 pathway upregulated in IFN-γ-treated mesenchymal stem cells. Immunobiology 221: 129–136.
    • (2016) Immunobiology , vol.221 , pp. 129-136
    • Hermankova, B.1    Zajicova, A.2    Javorkova, E.3
  • 138
    • 50849088328 scopus 로고    scopus 로고
    • The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes
    • Tabera, S., J.A. Perez-Simon, M. Diez-Campelo, et al. 2008. The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haemato-logica 93: 1301–1309.
    • (2008) Haemato-Logica , vol.93 , pp. 1301-1309
    • Tabera, S.1    Perez-Simon, J.A.2    Diez-Campelo, M.3
  • 139
    • 84959450663 scopus 로고    scopus 로고
    • Sca-1(+) mesenchymal stromal cells inhibit splenic marginal zone B lymphocytes commitment through Caspase-3
    • Chen, Y., J. Yang, H.J. Zhang, et al. 2016. Sca-1(+) mesenchymal stromal cells inhibit splenic marginal zone B lymphocytes commitment through Caspase-3. Cell Biol. Int. 40: 549–559.
    • (2016) Cell Biol. Int. , vol.40 , pp. 549-559
    • Chen, Y.1    Yang, J.2    Zhang, H.J.3
  • 140
    • 40949119840 scopus 로고    scopus 로고
    • Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients
    • Traggiai, E., S. Volpi, F. Schena, et al. 2008. Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells 26: 562–569.
    • (2008) Stem Cells , vol.26 , pp. 562-569
    • Traggiai, E.1    Volpi, S.2    Schena, F.3
  • 141
    • 34447339202 scopus 로고    scopus 로고
    • Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse
    • Reichardt, P., B. Dornbach, S. Rong, et al. 2007. Naive B cells generate regulatory T cells in the presence of a mature immunologic synapse. Blood 110: 1519–1529.
    • (2007) Blood , vol.110 , pp. 1519-1529
    • Reichardt, P.1    Dornbach, B.2    Rong, S.3
  • 142
    • 13544251387 scopus 로고    scopus 로고
    • Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response
    • Odendahl, M., H. Mei, B.F. Hoyer, et al. 2005. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 105: 1614–1621.
    • (2005) Blood , vol.105 , pp. 1614-1621
    • Odendahl, M.1    Mei, H.2    Hoyer, B.F.3
  • 143
    • 84880681283 scopus 로고    scopus 로고
    • Human mesenchymal stem cells upregulate CD1dCD5(+) regulatory B cells in experimental autoimmune encephalomyelitis
    • Guo, Y., K.H. Chan, W.H. Lai, et al. 2013. Human mesenchymal stem cells upregulate CD1dCD5(+) regulatory B cells in experimental autoimmune encephalomyelitis. Neu-roimmunomodulation 20: 294–303.
    • (2013) Neu-Roimmunomodulation , vol.20 , pp. 294-303
    • Guo, Y.1    Chan, K.H.2    Lai, W.H.3
  • 144
    • 84943547145 scopus 로고    scopus 로고
    • Mesenchymal stromal cells protect against caspase 3-mediated apoptosis of CD19(+) peripheral B cells through contact-dependent upregulation of VEGF
    • Healy, M.E., R. Bergin, B.P. Mahon & K. English. 2015. Mesenchymal stromal cells protect against caspase 3-mediated apoptosis of CD19(+) peripheral B cells through contact-dependent upregulation of VEGF. Stem Cells Dev. 24: 2391– 2402.
    • (2015) Stem Cells Dev , vol.24 , pp. 2391-2402
    • Healy, M.E.1    Bergin, R.2    Mahon, B.P.3    English, K.4
  • 145
    • 77953178765 scopus 로고    scopus 로고
    • Identification of a B cell signature associated with renal transplant tolerance in humans
    • Newell, K.A., A. Asare, A.D. Kirk, et al. 2010. Identification of a B cell signature associated with renal transplant tolerance in humans. J. Clin. Invest. 120: 1836–1847.
    • (2010) J. Clin. Invest. , vol.120 , pp. 1836-1847
    • Newell, K.A.1    Asare, A.2    Kirk, A.D.3
  • 146
    • 77953209236 scopus 로고    scopus 로고
    • Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans
    • Sagoo, P., E. Perucha, B. Sawitzki, et al. 2010. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. J. Clin. Invest. 120: 1848– 1861.
    • (2010) J. Clin. Invest. , vol.120 , pp. 1848-1861
    • Sagoo, P.1    Perucha, E.2    Sawitzki, B.3
  • 147
    • 84924614444 scopus 로고    scopus 로고
    • + regulatory B cells producing interleukin 10
    • + regulatory B cells producing interleukin 10. Leukemia 29: 636–646.
    • (2015) Leukemia , vol.29 , pp. 636-646
    • Peng, Y.1    Chen, X.2    Liu, Q.3
  • 148
    • 84928536031 scopus 로고    scopus 로고
    • CD24(Hi)CD27(+) and plasmablast-like regulatory B cells in human chronic graft-versus-host disease
    • de Masson, A., J.D. Bouaziz, H. Le Buanec, et al. 2015. CD24(hi)CD27(+) and plasmablast-like regulatory B cells in human chronic graft-versus-host disease. Blood 125: 1830–1839.
    • (2015) Blood , vol.125 , pp. 1830-1839
    • de Masson, A.1    Bouaziz, J.D.2    Le Buanec, H.3
  • 149
    • 0036142769 scopus 로고    scopus 로고
    • Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo
    • Bartholomew, A., C. Sturgeon, M. Siatskas, et al. 2002. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30: 42–48.
    • (2002) Exp. Hematol. , vol.30 , pp. 42-48
    • Bartholomew, A.1    Sturgeon, C.2    Siatskas, M.3
  • 150
    • 56149110595 scopus 로고    scopus 로고
    • Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells
    • Casiraghi, F., N. Azzollini, P. Cassis, et al. 2008. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J. Immunol. 181: 3933–3946.
    • (2008) J. Immunol. , vol.181 , pp. 3933-3946
    • Casiraghi, F.1    Azzollini, N.2    Cassis, P.3
  • 151
    • 71549118838 scopus 로고    scopus 로고
    • Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion
    • Wang, Y., A. Zhang, Z. Ye, et al.2009. Bone marrow-derived mesenchymal stem cells inhibit acute rejection of rat liver allografts in association with regulatory T-cell expansion. Transplant. Proc. 41: 4352–4356.
    • (2009) Transplant. Proc. , vol.41 , pp. 4352-4356
    • Wang, Y.1    Zhang, A.2    Ye, Z.3
  • 152
    • 68049125093 scopus 로고    scopus 로고
    • Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and-9
    • Ding, Y., D. Xu, G. Feng, et al. 2009. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and-9. Diabetes 58: 1797–1806.
    • (2009) Diabetes , vol.58 , pp. 1797-1806
    • Ding, Y.1    Xu, D.2    Feng, G.3
  • 153
    • 67650932291 scopus 로고    scopus 로고
    • Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance
    • Ge, W., J. Jiang, M.L. Baroja, et al. 2009. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am. J. Transplant. 9: 1760–1772.
    • (2009) Am. J. Transplant. , vol.9 , pp. 1760-1772
    • Ge, W.1    Jiang, J.2    Baroja, M.L.3
  • 154
    • 84865578483 scopus 로고    scopus 로고
    • Localization of mesenchymal stromal cells dictates their immune or proinflammatory effects in kidney transplantation
    • Casiraghi, F., N. Azzollini, M. Todeschini, et al. 2012. Localization of mesenchymal stromal cells dictates their immune or proinflammatory effects in kidney transplantation. Am. J. Transplant. 12: 2373–2383.
    • (2012) Am. J. Transplant. , vol.12 , pp. 2373-2383
    • Casiraghi, F.1    Azzollini, N.2    Todeschini, M.3
  • 156
    • 60149097402 scopus 로고    scopus 로고
    • Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta
    • Kong, Q.F., B. Sun, S.S. Bai, et al. 2009. Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J. Neuroimmunol. 207: 83–91.
    • (2009) J. Neuroimmunol , vol.207 , pp. 83-91
    • Kong, Q.F.1    Sun, B.2    Bai, S.S.3
  • 157
    • 77950377767 scopus 로고    scopus 로고
    • Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma
    • Nemeth, K., A. Keane-Myers, J.M. Brown, et al. 2010. Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc. Natl. Acad. Sci. U.S.A. 107: 5652–5657.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 5652-5657
    • Nemeth, K.1    Keane-Myers, A.2    Brown, J.M.3
  • 158
    • 84860636948 scopus 로고    scopus 로고
    • Mesenchymal-stem-cell-induced immunoregulation involves FAS-FAS- ligand-/FAS-mediated T cell apoptosis
    • Akiyama, K., C. Chen, D. Wang, et al. 2012. Mesenchymal-stem-cell-induced immunoregulation involves FAS-FAS- ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10: 544–555. ligand-/FAS-mediated
    • (2012) Cell Stem Cell , vol.10 , pp. 544-555
    • Akiyama, K.1    Chen, C.2    Wang, D.3
  • 159
    • 33745144672 scopus 로고    scopus 로고
    • Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model
    • Inoue, S., F.C. Popp, G.E. Koehl, et al. 2006. Immunomodulatory effects of mesenchymal stem cells in a rat organ transplant model. Transplantation 81: 1589–1595.
    • (2006) Transplantation , vol.81 , pp. 1589-1595
    • Inoue, S.1    Popp, F.C.2    Koehl, G.E.3
  • 160
    • 84906911104 scopus 로고    scopus 로고
    • The interaction between mesenchymal stem cells and steroids during inflammation
    • Chen, X., Y. Gan, W. Li, et al. 2014. The interaction between mesenchymal stem cells and steroids during inflammation. Cell Death Dis. 5: e1009.
    • (2014) Cell Death Dis , vol.5 , pp. 1009
    • Chen, X.1    Gan, Y.2    Li, W.3
  • 161
    • 33744917000 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice
    • Sudres, M., F. Norol, A. Trenado, et al. 2006. Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. J. Immunol. 176: 7761–7767.
    • (2006) J. Immunol. , vol.176 , pp. 7761-7767
    • Sudres, M.1    Norol, F.2    Trenado, A.3
  • 162
    • 49649106257 scopus 로고    scopus 로고
    • IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease
    • Polchert, D., J. Sobinsky, G. Douglas, et al. 2008. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur. J. Immunol. 38: 1745–1755.
    • (2008) Eur. J. Immunol. , vol.38 , pp. 1745-1755
    • Polchert, D.1    Sobinsky, J.2    Douglas, G.3
  • 163
    • 84925606379 scopus 로고    scopus 로고
    • Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation
    • Zhao, K., R. Lou, F. Huang, et al. 2015. Immunomodulation effects of mesenchymal stromal cells on acute graft-versus-host disease after hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 21: 97–104.
    • (2015) Biol. Blood Marrow Transplant. , vol.21 , pp. 97-104
    • Zhao, K.1    Lou, R.2    Huang, F.3
  • 164
    • 84940788141 scopus 로고    scopus 로고
    • Biomarker profiling of steroid-resistant acute GVHD in patients after infusion of mesenchymal stromal cells
    • Te Boome, L.C., C. Mansilla, L.E. van der Wagen, et al. 2015. Biomarker profiling of steroid-resistant acute GVHD in patients after infusion of mesenchymal stromal cells. Leukemia 29: 1839–1846.
    • (2015) Leukemia , vol.29 , pp. 1839-1846
    • Te Boome, L.C.1    Mansilla, C.2    van der Wagen, L.E.3
  • 165
    • 84860345135 scopus 로고    scopus 로고
    • Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: A Blood and Marrow Transplant Clinical Trials Network study
    • Levine, J.E., B.R. Logan, J. Wu, et al. 2012. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood 119: 3854– 3860.
    • (2012) Blood , vol.119 , pp. 3854-3860
    • Levine, J.E.1    Logan, B.R.2    Wu, J.3
  • 166
    • 84898996784 scopus 로고    scopus 로고
    • Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: Correlation of biological markers with clinical responses
    • Yin, F., M. Battiwalla, S. Ito, et al. 2014. Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. Stem Cells 32: 1278–1288.
    • (2014) Stem Cells , vol.32 , pp. 1278-1288
    • Yin, F.1    Battiwalla, M.2    Ito, S.3
  • 167
    • 84883375670 scopus 로고    scopus 로고
    • Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation
    • Jitschin, R., D. Mougiakakos, L. Von Bahr, et al. 2013. Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation. Stem Cells 31: 1715–1725.
    • (2013) Stem Cells , vol.31 , pp. 1715-1725
    • Jitschin, R.1    Mougiakakos, D.2    von Bahr, L.3
  • 168
    • 84886404127 scopus 로고    scopus 로고
    • Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III–IV acute graft-versus-host disease
    • Ball, L.M., M.E. Bernardo, H. Roelofs, et al. 2013. Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III–IV acute graft-versus-host disease. Br. J. Haematol. 163: 501– 509.
    • (2013) Br. J. Haematol. , vol.163 , pp. 501-509
    • Ball, L.M.1    Bernardo, M.E.2    Roelofs, H.3
  • 169
    • 84885826097 scopus 로고    scopus 로고
    • Gastrointestinal acute graft-versus-host disease in children: Histology for diagnosis, mesenchymal stromal cells for treatment, and biomarkers for prediction of response
    • Calkoen, F.G., C.M. Jol-van der Zijde, M.L. Mearin, et al. 2013. Gastrointestinal acute graft-versus-host disease in children: histology for diagnosis, mesenchymal stromal cells for treatment, and biomarkers for prediction of response. Biol. Blood Marrow Transplant. 19: 1590–1599.
    • (2013) Biol. Blood Marrow Transplant. , vol.19 , pp. 1590-1599
    • Calkoen, F.G.1    Jol-Van der Zijde, C.M.2    Mearin, M.L.3
  • 170
    • 84945465492 scopus 로고    scopus 로고
    • Mesenchymal stromal cells improve early lymphocyte recovery and T cell reconstitution after autologous hematopoietic stem cell transplantation in patients with malignant lymphomas
    • Batorov, E.V., E.Y. Shevela, M.A. Tikhonova, et al. 2015. Mesenchymal stromal cells improve early lymphocyte recovery and T cell reconstitution after autologous hematopoietic stem cell transplantation in patients with malignant lymphomas. Cell. Immunol. 297: 80–86.
    • (2015) Cell. Immunol. , vol.297 , pp. 80-86
    • Batorov, E.V.1    Shevela, E.Y.2    Tikhonova, M.A.3
  • 171
    • 84918500993 scopus 로고    scopus 로고
    • Analysis of results of acute graft-versus-host disease prophylaxis with donor multipotent mesenchymal stromal cells in patients with hemoblastoses after allogeneic bone marrow transplantation
    • Shipounova, I.N., N.A. Petinati, A.E. Bigildeev, et al. 2014. Analysis of results of acute graft-versus-host disease prophylaxis with donor multipotent mesenchymal stromal cells in patients with hemoblastoses after allogeneic bone marrow transplantation. Biochemistry 79: 1363– 1370.
    • (2014) Biochemistry , vol.79 , pp. 1363-1370
    • Shipounova, I.N.1    Petinati, N.A.2    Bigildeev, A.E.3
  • 172
    • 84881612444 scopus 로고    scopus 로고
    • Mesenchymal stem cells in solid organ transplantation (MiSOT) fourth meeting: Lessons learned from first clinical trials
    • Franquesa, M., M.J. Hoogduijn, M.E. Reinders, et al. 2013. Mesenchymal stem cells in solid organ transplantation (MiSOT) fourth meeting: lessons learned from first clinical trials. Transplantation 96: 234–238.
    • (2013) Transplantation , vol.96 , pp. 234-238
    • Franquesa, M.1    Hoogduijn, M.J.2    Reinders, M.E.3
  • 173
    • 84882450956 scopus 로고    scopus 로고
    • Mesenchymal stromal cells and kidney transplantation: Pretransplant infusion protects from graft dysfunction while fostering immunoregulation
    • Perico, N., F. Casiraghi, E. Gotti, et al. 2013. Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl. Int. 26: 867– 878.
    • (2013) Transpl. Int. , vol.26 , pp. 867-878
    • Perico, N.1    Casiraghi, F.2    Gotti, E.3
  • 174
    • 84863338204 scopus 로고    scopus 로고
    • Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: A randomized controlled trial
    • Tan, J., W. Wu, X. Xu, et al. 2012. Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307: 1169–1177.
    • (2012) JAMA , vol.307 , pp. 1169-1177
    • Tan, J.1    Wu, W.2    Xu, X.3
  • 175
    • 84872090856 scopus 로고    scopus 로고
    • Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: A clinical pilot study
    • Peng, Y., M. Ke, L. Xu, et al. 2013. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. Transplantation 95: 161–168.
    • (2013) Transplantation , vol.95 , pp. 161-168
    • Peng, Y.1    Ke, M.2    Xu, L.3
  • 176
    • 84912530901 scopus 로고    scopus 로고
    • Sequential third-party mesenchymal stromal cell therapy for refractory acute graft-versus-host disease
    • Sánchez-Guijo, F., T. Caballero-Velázquez, O. López-Villar, et al. 2014. Sequential third-party mesenchymal stromal cell therapy for refractory acute graft-versus-host disease. Biol. Blood Marrow Transplant. 20: 1580–1585.
    • (2014) Biol. Blood Marrow Transplant. , vol.20 , pp. 1580-1585
    • Sánchez-Guijo, F.1    Caballero-Velázquez, T.2    López-Villar, O.3
  • 177
    • 84907440929 scopus 로고    scopus 로고
    • Co-infusion of donor adipose tissue-derived mesenchymal and hematopoietic stem cells help safe minimization of immunosuppression in renal transplantation—single center experience
    • Vanikar, A., H.L. Trivedi, A. Kumar, et al. 2014. Co-infusion of donor adipose tissue-derived mesenchymal and hematopoietic stem cells help safe minimization of immunosuppression in renal transplantation—single center experience. Ren. Fail. 36: 1376–1384.
    • (2014) Ren. Fail. , vol.36 , pp. 1376-1384
    • Vanikar, A.1    Trivedi, H.L.2    Kumar, A.3
  • 178
    • 84876510229 scopus 로고    scopus 로고
    • Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: Results of a phase I study
    • Reinders, M., J. Futer, H. Roelofs, et al. 2013. Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl. Med. 2: 107–111.
    • (2013) Stem Cells Transl. Med. , vol.2 , pp. 107-111
    • Reinders, M.1    Futer, J.2    Roelofs, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.