메뉴 건너뛰기




Volumn 3, Issue 12, 2016, Pages 588-596

Autophagy: Machinery and regulation

Author keywords

Autophagosome formation; Autophagy; Cellular homeostasis; Pathogenesis; Physiological roles; Regulation

Indexed keywords


EID: 85021381025     PISSN: None     EISSN: 23112638     Source Type: Journal    
DOI: 10.15698/mic2016.12.546     Document Type: Review
Times cited : (478)

References (72)
  • 1
    • 0034537290 scopus 로고    scopus 로고
    • Autophagy as a regulated pathway of cellular degradation
    • Klionsky DJ, Emr SD (2000). Autophagy as a regulated pathway of cellular degradation. Science 290(5497): 1717-1721.
    • (2000) Science , vol.290 , Issue.5497 , pp. 1717-1721
    • Klionsky, D.J.1    Emr, S.D.2
  • 2
    • 84892569830 scopus 로고    scopus 로고
    • An overview of autophagy: Morphology, mechanism, and regulation
    • Parzych KR, Klionsky DJ (2014). An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3): 460-473.
    • (2014) Antioxid Redox Signal , vol.20 , Issue.3 , pp. 460-473
    • Parzych, K.R.1    Klionsky, D.J.2
  • 3
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T, Lamark T (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7(3): 279-296.
    • (2011) Autophagy , vol.7 , Issue.3 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 5
    • 84901801108 scopus 로고    scopus 로고
    • Organellophagy: Eliminating cellular building blocks via selective autophagy
    • Okamoto K (2014). Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205(4): 435-445.
    • (2014) J Cell Biol , vol.205 , Issue.4 , pp. 435-445
    • Okamoto, K.1
  • 6
    • 84955242756 scopus 로고    scopus 로고
    • Ubiquitin-Dependent And Independent Signals In Selective Autophagy
    • Khaminets A, Behl C, Dikic I (2016). Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol 26(1): 6-16.
    • (2016) Trends Cell Biol , vol.26 , Issue.1 , pp. 6-16
    • Khaminets, A.1    Behl, C.2    Dikic, I.3
  • 7
    • 77950510302 scopus 로고    scopus 로고
    • The Cvt pathway as a model for selective autophagy
    • Lynch-Day MA, Klionsky DJ (2010). The Cvt pathway as a model for selective autophagy. FEBS Lett 584(7): 1359-1366.
    • (2010) FEBS Lett , vol.584 , Issue.7 , pp. 1359-1366
    • Lynch-Day, M.A.1    Klionsky, D.J.2
  • 10
    • 33846702991 scopus 로고    scopus 로고
    • Autophagy, organelles and ageing
    • Terman A, Gustafsson B, Brunk UT (2007). Autophagy, organelles and ageing. J Pathol 211(2): 134-143.
    • (2007) J Pathol , vol.211 , Issue.2 , pp. 134-143
    • Terman, A.1    Gustafsson, B.2    Brunk, U.T.3
  • 12
    • 77956416339 scopus 로고    scopus 로고
    • Autophagy in mammalian development and differentiation
    • Mizushima N, Levine B (2010). Autophagy in mammalian development and differentiation. Nat Cell Biol 12(9): 823-830.
    • (2010) Nat Cell Biol , vol.12 , Issue.9 , pp. 823-830
    • Mizushima, N.1    Levine, B.2
  • 13
    • 77956472436 scopus 로고    scopus 로고
    • The role of autophagy during development in higher eukaryotes
    • Di Bartolomeo S, Nazio F, Cecconi F (2010). The role of autophagy during development in higher eukaryotes. Traffic 11(10): 1280-1289.
    • (2010) Traffic , vol.11 , Issue.10 , pp. 1280-1289
    • Di Bartolomeo, S.1    Nazio, F.2    Cecconi, F.3
  • 14
    • 84985916502 scopus 로고    scopus 로고
    • Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization
    • Song WH, Yi YJ, Sutovsky M, Meyers S, Sutovsky P (2016). Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci U S A.
    • (2016) Proc Natl Acad Sci U S A
    • Song, W.H.1    Yi, Y.J.2    Sutovsky, M.3    Meyers, S.4    Sutovsky, P.5
  • 15
    • 34247523194 scopus 로고    scopus 로고
    • Regulation of the oocyte-to-zygote transition
    • Stitzel ML, Seydoux G (2007). Regulation of the oocyte-to-zygote transition. Science 316(5823): 407-408.
    • (2007) Science , vol.316 , Issue.5823 , pp. 407-408
    • Stitzel, M.L.1    Seydoux, G.2
  • 18
    • 84920514275 scopus 로고    scopus 로고
    • Autophagy as a pro-death pathway
    • Denton D, Xu T, Kumar S (2015). Autophagy as a pro-death pathway. Immunol Cell Biol 93(1): 35-42.
    • (2015) Immunol Cell Biol , vol.93 , Issue.1 , pp. 35-42
    • Denton, D.1    Xu, T.2    Kumar, S.3
  • 21
    • 84937639381 scopus 로고    scopus 로고
    • Eaten alive: Novel insights into autophagy from multicellular model systems
    • Zhang H, Baehrecke EH (2015). Eaten alive: novel insights into autophagy from multicellular model systems. Trends Cell Biol 25(7): 376-387.
    • (2015) Trends Cell Biol , vol.25 , Issue.7 , pp. 376-387
    • Zhang, H.1    Baehrecke, E.H.2
  • 23
    • 84922541234 scopus 로고    scopus 로고
    • Autosis and autophagic cell death: The dark side of autophagy
    • Liu Y, Levine B (2015). Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22(3): 367-376.
    • (2015) Cell Death Differ , vol.22 , Issue.3 , pp. 367-376
    • Liu, Y.1    Levine, B.2
  • 25
    • 67649607465 scopus 로고    scopus 로고
    • Autophagy, immunity, and microbial adaptations
    • Deretic V, Levine B (2009). Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6): 527-549.
    • (2009) Cell Host Microbe , vol.5 , Issue.6 , pp. 527-549
    • Deretic, V.1    Levine, B.2
  • 26
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S (2013). Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13(10): 722-737.
    • (2013) Nat Rev Immunol , vol.13 , Issue.10 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 27
    • 0034683568 scopus 로고    scopus 로고
    • Tor-mediated induction of autophagy via an Apg1 protein kinase complex
    • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6): 1507-1513.
    • (2000) J Cell Biol , vol.150 , Issue.6 , pp. 1507-1513
    • Kamada, Y.1    Funakoshi, T.2    Shintani, T.3    Nagano, K.4    Ohsumi, M.5    Ohsumi, Y.6
  • 28
    • 33846514235 scopus 로고    scopus 로고
    • Hierarchy of Atg proteins in pre-autophagosomal structure organization
    • Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12(2): 209-218.
    • (2007) Genes Cells , vol.12 , Issue.2 , pp. 209-218
    • Suzuki, K.1    Kubota, Y.2    Sekito, T.3    Ohsumi, Y.4
  • 30
    • 0027905021 scopus 로고
    • Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting
    • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993). Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260(5104): 88-91.
    • (1993) Science , vol.260 , Issue.5104 , pp. 88-91
    • Schu, P.V.1    Takegawa, K.2    Fry, M.J.3    Stack, J.H.4    Waterfield, M.D.5    Emr, S.D.6
  • 31
    • 0035809160 scopus 로고    scopus 로고
    • Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae
    • Kihara A, Noda T, Ishihara N, Ohsumi Y (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152(3): 519-530.
    • (2001) J Cell Biol , vol.152 , Issue.3 , pp. 519-530
    • Kihara, A.1    Noda, T.2    Ishihara, N.3    Ohsumi, Y.4
  • 32
    • 77950506156 scopus 로고    scopus 로고
    • Regulation of autophagy by phosphatidylinositol 3-phosphate
    • Burman C, Ktistakis NT (2010). Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 584(7): 1302-1312.
    • (2010) FEBS Lett , vol.584 , Issue.7 , pp. 1302-1312
    • Burman, C.1    Ktistakis, N.T.2
  • 33
    • 53049102656 scopus 로고    scopus 로고
    • The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function
    • Obara K, Sekito T, Niimi K, Ohsumi Y (2008). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem 283(35): 23972-23980.
    • (2008) J Biol Chem , vol.283 , Issue.35 , pp. 23972-23980
    • Obara, K.1    Sekito, T.2    Niimi, K.3    Ohsumi, Y.4
  • 34
    • 0028230738 scopus 로고
    • Ultrastructural analysis of the autophagic process in yeast: Detection of autophagosomes and their characterization
    • Baba M, Takeshige K, Baba N, Ohsumi Y (1994). Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124(6): 903-913.
    • (1994) J Cell Biol , vol.124 , Issue.6 , pp. 903-913
    • Baba, M.1    Takeshige, K.2    Baba, N.3    Ohsumi, Y.4
  • 35
    • 0035286734 scopus 로고    scopus 로고
    • Molecular dissection of autophagy: Two ubiquitin-like systems
    • Ohsumi Y (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3): 211-216.
    • (2001) Nat Rev Mol Cell Biol , vol.2 , Issue.3 , pp. 211-216
    • Ohsumi, Y.1
  • 36
    • 50249154070 scopus 로고    scopus 로고
    • In vivo reconstitution of autophagy in Saccharomyces cerevisiae
    • Cao Y, Cheong H, Song H, Klionsky DJ (2008). In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J Cell Biol 182(4): 703-713.
    • (2008) J Cell Biol , vol.182 , Issue.4 , pp. 703-713
    • Cao, Y.1    Cheong, H.2    Song, H.3    Klionsky, D.J.4
  • 37
    • 84864282281 scopus 로고    scopus 로고
    • Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2
    • Kobayashi T, Suzuki K, Ohsumi Y (2012). Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett 586(16): 2473-2478.
    • (2012) FEBS Lett , vol.586 , Issue.16 , pp. 2473-2478
    • Kobayashi, T.1    Suzuki, K.2    Ohsumi, Y.3
  • 38
    • 0034614934 scopus 로고    scopus 로고
    • Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways
    • Noda T, Kim J, Huang W-P, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 148(3): 465-480.
    • (2000) J Cell Biol , vol.148 , Issue.3 , pp. 465-480
    • Noda, T.1    Kim, J.2    Huang, W.-P.3    Baba, M.4    Tokunaga, C.5    Ohsumi, Y.6    Klionsky, D.J.7
  • 40
    • 27644544004 scopus 로고    scopus 로고
    • Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts
    • Reggiori F, Shintani T, Nair U, Klionsky DJ (2005). Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 1(2): 101-109.
    • (2005) Autophagy , vol.1 , Issue.2 , pp. 101-109
    • Reggiori, F.1    Shintani, T.2    Nair, U.3    Klionsky, D.J.4
  • 41
    • 0034676037 scopus 로고    scopus 로고
    • The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway
    • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y (2000). The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 151(2): 263-276.
    • (2000) J Cell Biol , vol.151 , Issue.2 , pp. 263-276
    • Kirisako, T.1    Ichimura, Y.2    Okada, H.3    Kabeya, Y.4    Mizushima, N.5    Yoshimori, T.6    Ohsumi, M.7    Takao, T.8    Noda, T.9    Ohsumi, Y.10
  • 43
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
    • Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, Mizushima N (2014). The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25(8): 1327-1337.
    • (2014) Mol Biol Cell , vol.25 , Issue.8 , pp. 1327-1337
    • Jiang, P.1    Nishimura, T.2    Sakamaki, Y.3    Itakura, E.4    Hatta, T.5    Natsume, T.6    Mizushima, N.7
  • 44
    • 0034809331 scopus 로고    scopus 로고
    • Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole
    • Epple UD, Suriapranata I, Eskelinen E-L, Thumm M (2001). Aut5/Cvt17p, a putative lipase essential for disintegration of autophagic bodies inside the vacuole. J Bacteriol 183(20): 5942-5955.
    • (2001) J Bacteriol , vol.183 , Issue.20 , pp. 5942-5955
    • Epple, U.D.1    Suriapranata, I.2    Eskelinen, E.-L.3    Thumm, M.4
  • 45
    • 0035910577 scopus 로고    scopus 로고
    • Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase
    • Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ (2001). Degradation of lipid vesicles in the yeast vacuole requires function of Cvt17, a putative lipase. J Biol Chem 276(3): 2083-2087.
    • (2001) J Biol Chem , vol.276 , Issue.3 , pp. 2083-2087
    • Teter, S.A.1    Eggerton, K.P.2    Scott, S.V.3    Kim, J.4    Fischer, A.M.5    Klionsky, D.J.6
  • 46
    • 33845407202 scopus 로고    scopus 로고
    • Atg22 recycles amino acids to link the degradative and recycling functions of autophagy
    • Yang Z, Huang J, Geng J, Nair U, Klionsky DJ (2006). Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17(12): 5094-5104.
    • (2006) Mol Biol Cell , vol.17 , Issue.12 , pp. 5094-5104
    • Yang, Z.1    Huang, J.2    Geng, J.3    Nair, U.4    Klionsky, D.J.5
  • 47
    • 0014083718 scopus 로고
    • Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes
    • Deter RL, de Duve C (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 33(2): 437-449.
    • (1967) J Cell Biol , vol.33 , Issue.2 , pp. 437-449
    • Deter, R.L.1    de Duve, C.2
  • 48
    • 0017697151 scopus 로고
    • Induction of autophagy by amino-acid deprivation in perfused rat liver
    • Mortimore GE, Schworer CM (1977). Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature 270(5633): 174-176.
    • (1977) Nature , vol.270 , Issue.5633 , pp. 174-176
    • Mortimore, G.E.1    Schworer, C.M.2
  • 49
    • 84859778293 scopus 로고    scopus 로고
    • MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM (2012). mTOR signaling in growth control and disease. Cell 149(2): 274-293.
    • (2012) Cell , vol.149 , Issue.2 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 51
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
    • Yuan HX, Russell RC, Guan K-L (2013). Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 9(12): 1983-1995.
    • (2013) Autophagy , vol.9 , Issue.12 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.-L.3
  • 52
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141(2): 290-303.
    • (2010) Cell , vol.141 , Issue.2 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 53
    • 84866431363 scopus 로고    scopus 로고
    • Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1
    • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012). Ragulator is a GEF for the rag GTPases that signal amino acid levels to mTORC1. Cell 150(6): 1196-1208.
    • (2012) Cell , vol.150 , Issue.6 , pp. 1196-1208
    • Bar-Peled, L.1    Schweitzer, L.D.2    Zoncu, R.3    Sabatini, D.M.4
  • 54
    • 84940550513 scopus 로고    scopus 로고
    • Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A
    • Wong PM, Feng Y, Wang J, Shi R, Jiang X (2015). Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat Commun 6:8048.
    • (2015) Nat Commun , vol.6 , pp. 8048
    • Wong, P.M.1    Feng, Y.2    Wang, J.3    Shi, R.4    Jiang, X.5
  • 57
    • 70350128436 scopus 로고    scopus 로고
    • The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy
    • Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK (2009). The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci U S A 106(40): 17049-17054.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , Issue.40 , pp. 17049-17054
    • Stephan, J.S.1    Yeh, Y.Y.2    Ramachandran, V.3    Deminoff, S.J.4    Herman, P.K.5
  • 58
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: A nutrient and energy sensor that maintains energy homeostasis
    • Hardie DG, Ross FA, Hawley SA (2012). AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4): 251-262.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , Issue.4 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 59
    • 84891745585 scopus 로고    scopus 로고
    • Autophagy regulation by nutrient signaling
    • Russell RC, Yuan HX, Guan KL (2014). Autophagy regulation by nutrient signaling. Cell Res 24(1): 42-57.
    • (2014) Cell Res , vol.24 , Issue.1 , pp. 42-57
    • Russell, R.C.1    Yuan, H.X.2    Guan, K.L.3
  • 60
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Kim J, Kundu M, Viollet B, Guan KL (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2): 132-141.
    • (2011) Nat Cell Biol , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3    Guan, K.L.4
  • 61
    • 84929502727 scopus 로고    scopus 로고
    • How to control self-digestion: Transcriptional, post-transcriptional, and post-translational regulation of autophagy
    • Feng Y, Yao Z, Klionsky DJ (2015). How to control self-digestion: transcriptional, post-transcriptional, and post-translational regulation of autophagy. Trends Cell Biol 25(6): 354-363.
    • (2015) Trends Cell Biol , vol.25 , Issue.6 , pp. 354-363
    • Feng, Y.1    Yao, Z.2    Klionsky, D.J.3
  • 62
    • 84901346313 scopus 로고    scopus 로고
    • Autophagy--a key player in cellular and body metabolism
    • Kim KH, Lee MS (2014). Autophagy--a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6): 322-337.
    • (2014) Nat Rev Endocrinol , vol.10 , Issue.6 , pp. 322-337
    • Kim, K.H.1    Lee, M.S.2
  • 63
    • 84870943446 scopus 로고    scopus 로고
    • The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size
    • Backues SK, Lynch-Day MA, Klionsky DJ (2012). The Ume6-Sin3-Rpd3 complex regulates ATG8 transcription to control autophagosome size. Autophagy 8(12): 1835-1836.
    • (2012) Autophagy , vol.8 , Issue.12 , pp. 1835-1836
    • Backues, S.K.1    Lynch-Day, M.A.2    Klionsky, D.J.3
  • 64
    • 84902652820 scopus 로고    scopus 로고
    • Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation
    • Jin M, He D, Backues SK, Freeberg MA, Liu X, Kim JK, Klionsky DJ (2014). Transcriptional regulation by Pho23 modulates the frequency of autophagosome formation. Curr Biol 24(12): 1314-1322.
    • (2014) Curr Biol , vol.24 , Issue.12 , pp. 1314-1322
    • Jin, M.1    He, D.2    Backues, S.K.3    Freeberg, M.A.4    Liu, X.5    Kim, J.K.6    Klionsky, D.J.7
  • 65
    • 84891738225 scopus 로고    scopus 로고
    • Autophagy and human diseases
    • Jiang P, Mizushima N (2014). Autophagy and human diseases. Cell Res 24(1): 69-79.
    • (2014) Cell Res , vol.24 , Issue.1 , pp. 69-79
    • Jiang, P.1    Mizushima, N.2
  • 66
    • 34548265278 scopus 로고    scopus 로고
    • Autophagy and human disease
    • Huang J, Klionsky DJ (2007). Autophagy and human disease. Cell Cycle 6(15): 1837-1849.
    • (2007) Cell Cycle , vol.6 , Issue.15 , pp. 1837-1849
    • Huang, J.1    Klionsky, D.J.2
  • 67
    • 11444267601 scopus 로고    scopus 로고
    • Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases
    • Nixon RA (2005). Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol Aging 26(3): 373-382.
    • (2005) Neurobiol Aging , vol.26 , Issue.3 , pp. 373-382
    • Nixon, R.A.1
  • 69
    • 33748414185 scopus 로고    scopus 로고
    • Autophagy and neurodegeneration
    • Komatsu M, Kominami E, Tanaka K (2006). Autophagy and neurodegeneration. Autophagy 2(4): 315-317.
    • (2006) Autophagy , vol.2 , Issue.4 , pp. 315-317
    • Komatsu, M.1    Kominami, E.2    Tanaka, K.3
  • 70
    • 79953854897 scopus 로고    scopus 로고
    • Alzheimer's disease: The challenge of the second century
    • Holtzman DM, Morris JC, Goate AM (2011). Alzheimer's disease: the challenge of the second century. Sci Transl Med 3(77): 77-71.
    • (2011) Sci Transl Med , vol.3 , Issue.77 , pp. 77
    • Holtzman, D.M.1    Morris, J.C.2    Goate, A.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.