메뉴 건너뛰기




Volumn 48, Issue 3, 2017, Pages 867-882

Incorporating large-scale atmospheric variables in long-term seasonal rainfall forecasting using artificial neural networks: An application to the Ping Basin in Thailand

Author keywords

Artificial neural network; Large scale atmospheric variables; Representative concentration pathways; Seasonal rainfall forecasting

Indexed keywords

ATMOSPHERIC HUMIDITY; CLIMATE CHANGE; CLIMATE MODELS; FORECASTING; NEURAL NETWORKS; RAIN; WATER RESOURCES;

EID: 85020534978     PISSN: 19989563     EISSN: 22247955     Source Type: Journal    
DOI: 10.2166/nh.2016.212     Document Type: Conference Paper
Times cited : (13)

References (74)
  • 1
    • 84883561303 scopus 로고    scopus 로고
    • On the bias correction of general circulation model output for Indian summer monsoon
    • Acharya, N., Chattopadhyay, S., Mohanty, U. C, Dosh, S. K. & Sahoo, L. N. 2012 On the bias correction of general circulation model output for Indian summer monsoon. J. Meterol. Appl. 20, 349-356.
    • (2012) J. Meterol. Appl. , vol.20 , pp. 349-356
    • Acharya, N.1    Chattopadhyay, S.2    Mohanty, U.C.3    Dosh, S.K.4    Sahoo, L.N.5
  • 2
    • 79957699832 scopus 로고    scopus 로고
    • Long term rainfall forecasting by integrated artificial neural network-fuzzy logic-wavelet model in Karoon basin
    • Afshin, S., Fahmi, H., Alizadeh, A., Sedghi, H. & Kaveh, F. 2011 Long term rainfall forecasting by integrated artificial neural network-fuzzy logic-wavelet model in Karoon basin. J. Sci. Res. Ess. 6, 1200-1208.
    • (2011) J. Sci. Res. Ess. , vol.6 , pp. 1200-1208
    • Afshin, S.1    Fahmi, H.2    Alizadeh, A.3    Sedghi, H.4    Kaveh, F.5
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • American Society Civil Engineers 2000 Artificial neural networks in hydrology. I: preliminary concepts.J. Hydrol. Eng. 5, 115-123.
    • (2000) J. Hydrol. Eng. , Issue.5 , pp. 115-123
  • 4
    • 85020535774 scopus 로고    scopus 로고
    • AON Corporation 2012 2011 Thailand Floods Event Recap Report. Impact Forecasting March 2012, 38 (accessed 30 March 2013)
    • AON Corporation 2012 2011 Thailand Floods Event Recap Report. Impact Forecasting March 2012, 38. Available at: http://thoughtleadership.aonbenfield.com/Pages/Home.aspx? ReportYear=2012 (accessed 30 March 2013).
  • 5
    • 79952708249 scopus 로고    scopus 로고
    • Identifying prominent explanatory variables for water demand prediction using artificial neural networks: A case study of Bangkok
    • Babel, M. S. & Shinde, V. R. 2011 Identifying prominent explanatory variables for water demand prediction using artificial neural networks: a case study of Bangkok. Water Res. Manage. 25, 1653-1676.
    • (2011) Water Res. Manage. , vol.25 , pp. 1653-1676
    • Babel, M.S.1    Shinde, V.R.2
  • 6
    • 0032534208 scopus 로고    scopus 로고
    • Simulated changes in Southeast Asian monsoon precipitation resulting from anthropogenic emissions
    • Bhaskaran, B. & Mitchell, J. F. B. 1998 Simulated changes in Southeast Asian monsoon precipitation resulting from anthropogenic emissions. Int. J. Climatol. 18, 1455-1462.
    • (1998) Int. J. Climatol. , vol.18 , pp. 1455-1462
    • Bhaskaran, B.1    Mitchell, J.F.B.2
  • 7
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden, G. J., Dandy, G. C. & Maier, H. R. 2005 Input determination for neural network models in water resources applications. Part 1-background and methodology. J. Hydrol. 301, 75-92.
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 10
    • 77957365482 scopus 로고    scopus 로고
    • Multivariate forecast of winter monsoon rainfall in India using SST anomaly as a predictor: Neuro-computing and statistical approaches
    • Chattopadhyay, G., Chattopadhyay, S. & Jain, R. 2010 Multivariate forecast of winter monsoon rainfall in India using SST anomaly as a predictor: neuro-computing and statistical approaches. J. Com. Ren. Geosci. 342, 755-765.
    • (2010) J. Com. Ren. Geosci. , vol.342 , pp. 755-765
    • Chattopadhyay, G.1    Chattopadhyay, S.2    Jain, R.3
  • 12
    • 84865969055 scopus 로고    scopus 로고
    • Communication of the role of natural variability in future North American climate
    • Deser, C, Knuti, R., Solomon, S. & Phillips, A. S. 2012 Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2 (11), 775-779.
    • (2012) Nat. Clim. Change , vol.2 , Issue.11 , pp. 775-779
    • Deser, C.1    Knuti, R.2    Solomon, S.3    Phillips, A.S.4
  • 14
    • 84875936673 scopus 로고    scopus 로고
    • Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble
    • Donate, J. P., Cortez, P., Sánchez, G. G. & Miguel, A. S. 2013 Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble. Neuro-com. 109, 27-32.
    • (2013) Neuro-com. , vol.109 , pp. 27-32
    • Donate, J.P.1    Cortez, P.2    Sánchez, G.G.3    Miguel, A.S.4
  • 16
    • 84859572047 scopus 로고    scopus 로고
    • Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia
    • El-Shafie, A., Noureldin, A., Taha, M. R. & Hussain, A. 2012 Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia. Hydrol. Earth Syst. Sci. 16, 1151-1169.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , pp. 1151-1169
    • El-Shafie, A.1    Noureldin, A.2    Taha, M.R.3    Hussain, A.4
  • 17
    • 85020547524 scopus 로고    scopus 로고
    • ESRL 2013 Interactive plotting and analysis: Linear monthly/seasonal correlations (accessed 27 May 2013)
    • ESRL 2013 Interactive plotting and analysis: Linear monthly/seasonal correlations. Available at: http://www.esrl.noaa. gov/psd/data/correlation/(accessed 27 May 2013).
  • 18
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: Principles and understanding
    • Flood, I. & Kartam, N. 1994 Neural networks in civil engineering. I: principles and understanding. J. Com. Civil Eng. 8 (2), 131-148.
    • (1994) J. Com. Civil Eng. , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 19
    • 85020534192 scopus 로고    scopus 로고
    • A neural network model to predict rainfall in large Indian cities
    • Gadgay, B., Kulkarni, S. & Chandrasekhar, B. 2011 A neural network model to predict rainfall in large Indian cities. World J. Sci. Tech. 1, 6-11.
    • (2011) World J. Sci. Tech. , vol.1 , pp. 6-11
    • Gadgay, B.1    Kulkarni, S.2    Chandrasekhar, B.3
  • 20
    • 0842313028 scopus 로고    scopus 로고
    • Distributed quantitative precipitation forecasting (DQPF) using information from radar and numerical weather prediction models
    • Ganguly, A. R & Bras, R L. 2003 Distributed quantitative precipitation forecasting (DQPF) using information from radar and numerical weather prediction models. J. Hydrometeor. 4, 1168-1180.
    • (2003) J. Hydrometeor. , vol.4 , pp. 1168-1180
    • Ganguly, A.R.1    Bras, R.L.2
  • 21
    • 67349182882 scopus 로고    scopus 로고
    • Dynamical artificial neural network model for forecasting nonlinear processes
    • Ghiassi, M. & Nangoy, S. 2009 Dynamical artificial neural network model for forecasting nonlinear processes. Com. Indust. Eng. 57, 287-297.
    • (2009) Com. Indust. Eng. , vol.57 , pp. 287-297
    • Ghiassi, M.1    Nangoy, S.2
  • 22
    • 33644588724 scopus 로고    scopus 로고
    • Future rainfall scenario over Orissa with GCM projections by statistical downscaling
    • Ghosh, S. & Mujumdar, P. P. 2006 Future rainfall scenario over Orissa with GCM projections by statistical downscaling. J. Curr. Sci. 90, 396-404.
    • (2006) J. Curr. Sci. , vol.90 , pp. 396-404
    • Ghosh, S.1    Mujumdar, P.P.2
  • 23
    • 85020493501 scopus 로고    scopus 로고
    • Prediction of seasonal precipitation using artificial neural networks (case study: Selected stations of (Iran) Khozestan province)
    • Golabi, M. R, Radmanesh, F., Akhondali, A. & Kashefipoor, M. 2013 Prediction of seasonal precipitation using artificial neural networks (case study: selected stations of (Iran) Khozestan province). J. Basic Appl. Sci Res. 3, 589-595.
    • (2013) J. Basic Appl. Sci Res. , vol.3 , pp. 589-595
    • Golabi, M.R.1    Radmanesh, F.2    Akhondali, A.3    Kashefipoor, M.4
  • 24
    • 33645710640 scopus 로고    scopus 로고
    • Long-range monsoon rainfall prediction of 2005 for the districts and sub-division Kerala with artificial neural network
    • Guhathakurta, P. 2006 Long-range monsoon rainfall prediction of 2005 for the districts and sub-division Kerala with artificial neural network. Current Sci. 90, 773-779.
    • (2006) Current Sci. , vol.90 , pp. 773-779
    • Guhathakurta, P.1
  • 25
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I. & Elisseeff, A. 2003 An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 27
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok, Thailand
    • Hung, N. Q., Babel, M. S., Weesakul, S. & Tripathi, N. K 2009 An artificial neural network model for rainfall forecasting in Bangkok, Thailand. J. Hydrol. Earth Syst. Sci. 13, 1413-1425.
    • (2009) J. Hydrol. Earth Syst. Sci. , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 28
    • 84864272014 scopus 로고    scopus 로고
    • River discharge projection under climate change in the Chao Phraya River basin
    • Hunukumbura, P. B. & Tachikawa, Y 2012 River discharge projection under climate change in the Chao Phraya River basin. J. Met. Soc. Japan Ser. 90A, 137-150.
    • (2012) J. Met. Soc. Japan Ser. , vol.90 A , pp. 137-150
    • Hunukumbura, P.B.1    Tachikawa, Y.2
  • 29
    • 33746881799 scopus 로고    scopus 로고
    • Bias correction of daily GCM rainfall for crop simulation studies
    • Ines, A. V. M. & Hansen, J. W. 2006 Bias correction of daily GCM rainfall for crop simulation studies. J. Agr. Forest Met. 138, 44-53.
    • (2006) J. Agr. Forest Met. , vol.138 , pp. 44-53
    • Ines, A.V.M.1    Hansen, J.W.2
  • 30
    • 38049167065 scopus 로고    scopus 로고
    • IPCC (Working Group I) Inter Governmental Panel on Climate Change, Geneva, Switzerland
    • IPCC (Working Group I) 2007 IPCC fourth Assessment Report: Climate Change 2007. Inter Governmental Panel on Climate Change, Geneva, Switzerland.
    • (2007) IPCC Fourth Assessment Report: Climate Change 2007
  • 31
    • 84863393620 scopus 로고    scopus 로고
    • A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations
    • Johnson, F. & Sharma, A. 2012 A nesting model for bias correction of variability at multiple time scales in general circulation model precipitation simulations. J. Water Resour. Res. 48, W01504.
    • (2012) J. Water Resour. Res. , vol.48 , pp. W01504
    • Johnson, F.1    Sharma, A.2
  • 32
    • 84863880488 scopus 로고    scopus 로고
    • Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming
    • Kashid, S. S. & Maity, R. 2012 Prediction of monthly rainfall on homogeneous monsoon regions of India based on large scale circulation patterns using Genetic Programming. J. Hydrol. 454-455, 26-41.
    • (2012) J. Hydrol. , vol.454-455 , pp. 26-41
    • Kashid, S.S.1    Maity, R.2
  • 34
    • 33846410640 scopus 로고    scopus 로고
    • Inter-seasonal and seasonal persisting patterns of Indian monsoon rainfall
    • Krishnamurthy, V. & Shakla, J. 2007 Inter-seasonal and seasonal persisting patterns of Indian monsoon rainfall. J. Clim. 20, 3-20.
    • (2007) J. Clim. , vol.20 , pp. 3-20
    • Krishnamurthy, V.1    Shakla, J.2
  • 35
    • 0034082987 scopus 로고    scopus 로고
    • Dynamics of breaks in the Indian summer monsoon
    • Krishnan, R, Zhang, C. & Sugi, M. 2000 Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci. 57, 1354-1372.
    • (2000) J. Atmos. Sci. , vol.57 , pp. 1354-1372
    • Krishnan, R.1    Zhang, C.2    Sugi, M.3
  • 37
    • 43749101532 scopus 로고    scopus 로고
    • Statistical prediction of East-Asian summer monsoon rainfall based on SST and sea ice concentration
    • Li, F. & Zeng, Q. 2008 Statistical prediction of East-Asian summer monsoon rainfall based on SST and sea ice concentration. J. Meteorol. Soc. Jpn 86, 237-243.
    • (2008) J. Meteorol. Soc. Jpn , vol.86 , pp. 237-243
    • Li, F.1    Zeng, Q.2
  • 38
    • 0242306014 scopus 로고    scopus 로고
    • A real time hydrological forecasting system using a fuzzy clustering approach
    • Luchetta, A. & Manetti, S. 2003 A real time hydrological forecasting system using a fuzzy clustering approach. J. Com. Geosci. 29, 1111-1117.
    • (2003) J. Com. Geosci. , vol.29 , pp. 1111-1117
    • Luchetta, A.1    Manetti, S.2
  • 39
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk, K C, Ball, J. E. & Sharma, A. 2000 A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. J. Hydrol. 227, 56-65.
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 40
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R & Dandy, G C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Modell. Softw. 15, 101-124.
    • (2000) Environ. Modell. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 42
    • 85020502508 scopus 로고    scopus 로고
    • A multivariate artificial neural network approach for rainfall forecasting
    • Case study of Victoria, Australia. Vol I (accessed 19 April 2013)
    • Mekanik, F. & Imteaz, M. A. 2012 A multivariate artificial neural network approach for rainfall forecasting. In: Proceedings of the World Congress on Engineering and Computer Science 2012, Case study of Victoria, Australia. Vol I. Available at: http://www.iaeng.org/publication/WCECS2012/WCECS 2012-pp557-561 (accessed 19 April 2013).
    • (2012) Proceedings of the World Congress on Engineering and Computer Science 2012
    • Mekanik, F.1    Imteaz, M.A.2
  • 43
    • 33847659618 scopus 로고    scopus 로고
    • Long range prediction of Indian summer monsoon rainfall
    • Munot, A. A. & Kumar, K. K. 2007 Long range prediction of Indian summer monsoon rainfall. J. Earth Syst. Sci. 116 (1), 73-79.
    • (2007) J. Earth Syst. Sci. , vol.116 , Issue.1 , pp. 73-79
    • Munot, A.A.1    Kumar, K.K.2
  • 44
    • 44449141896 scopus 로고    scopus 로고
    • An empirical model for the seasonal prediction of south west monsoon rainfall over Kerala, a meteorological sub division of India
    • Nayagam, L. R., Janardanan, R. & Mohan, H. S. R. 2008 An empirical model for the seasonal prediction of south west monsoon rainfall over Kerala, a meteorological sub division of India. Int. J. Climatol. 28, 823-831.
    • (2008) Int. J. Climatol. , vol.28 , pp. 823-831
    • Nayagam, L.R.1    Janardanan, R.2    Mohan, H.S.R.3
  • 45
    • 84883575824 scopus 로고    scopus 로고
    • Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall-runoff modeling
    • Nourani, V & Parhizkar, M. 2013 Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall-runoff modeling. J. Hydroinform. 15 (3), 829-848.
    • (2013) J. Hydroinform. , vol.15 , Issue.3 , pp. 829-848
    • Nourani, V.1    Parhizkar, M.2
  • 46
    • 84943252067 scopus 로고    scopus 로고
    • Application of entropy concept for input selection of wavelet-ANN based rainfall-runoff modeling
    • Nourani, V, Khanghah, T. R & Baghanam, A. H. 2015 Application of entropy concept for input selection of wavelet-ANN based rainfall-runoff modeling. J. Environ. Inform. 26 (1), 52-70.
    • (2015) J. Environ. Inform. , vol.26 , Issue.1 , pp. 52-70
    • Nourani, V.1    Khanghah, T.R.2    Baghanam, A.H.3
  • 47
    • 77957982558 scopus 로고    scopus 로고
    • Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models
    • Piani, C, Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S. & Haerter, J. O. 2010 Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models.J. Hydrol. 395, 199-215.
    • (2010) J. Hydrol. , vol.395 , pp. 199-215
    • Piani, C.1    Weedon, G.P.2    Best, M.3    Gomes, S.M.4    Viterbo, P.5    Hagemann, S.6    Haerter, J.O.7
  • 49
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region
    • Ramirez, M. C. V, Velho, H. F. C. & Ferreira, N. J. 2005 Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J. Hydrol. 301, 146-152.
    • (2005) J. Hydrol. , vol.301 , pp. 146-152
    • Ramirez, M.C.V.1    Velho, H.F.C.2    Ferreira, N.J.3
  • 50
    • 77952652059 scopus 로고    scopus 로고
    • Observed and projected climate shifts 1901-2100 depicted by world maps of the Koppen-Geiger climate classification
    • Rubel, F. & Kottek, M. 2010 Observed and projected climate shifts 1901-2100 depicted by world maps of the Koppen-Geiger climate classification. Meteorol. Z. 19, 135-141.
    • (2010) Meteorol. Z. , vol.19 , pp. 135-141
    • Rubel, F.1    Kottek, M.2
  • 51
    • 0037927509 scopus 로고    scopus 로고
    • Comparison of various precipitation downscaling methods for the simulation of stream flow in a rain shadow river basin
    • Salathe, E. P. 2003 Comparison of various precipitation downscaling methods for the simulation of stream flow in a rain shadow river basin. Int. J. Climatol. 23, 887-901.
    • (2003) Int. J. Climatol. , vol.23 , pp. 887-901
    • Salathe, E.P.1
  • 52
    • 0004764260 scopus 로고
    • A method for calculating degree-days to any base temperature
    • Schoenau, G J. & Kehrig, R A. 1990 A method for calculating degree-days to any base temperature. Energy Build. 14 (4), 299-302.
    • (1990) Energy Build. , vol.14 , Issue.4 , pp. 299-302
    • Schoenau, G.J.1    Kehrig, R.A.2
  • 53
    • 84947348224 scopus 로고
    • Estimates of the regression coefficient based on Kendall's tau
    • Sen, P. K 1968 Estimates of the regression coefficient based on Kendall's tau. J. Amer. Stat. Ass. 63, 1379-1389.
    • (1968) J. Amer. Stat. Ass. , vol.63 , pp. 1379-1389
    • Sen, P.K.1
  • 54
    • 34250702775 scopus 로고    scopus 로고
    • Spatial disaggregation of bias corrected GCM precipitation for improved hydrologic simulation: Ping river basin, Thailand
    • Sharma, D., Gupta, A. D. & Babel, M. S. 2007 Spatial disaggregation of bias corrected GCM precipitation for improved hydrologic simulation: Ping river basin, Thailand. Hydrol. Earth Syst. Sci. 11, 1373-1390.
    • (2007) Hydrol. Earth Syst. Sci. , vol.11 , pp. 1373-1390
    • Sharma, D.1    Gupta, A.D.2    Babel, M.S.3
  • 55
    • 84914150985 scopus 로고    scopus 로고
    • Atmospheric circulation as a source of uncertainty in climate change projections
    • Shepherd, T. G 2014 Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7 (10), 703-708.
    • (2014) Nat. Geosci. , vol.7 , Issue.10 , pp. 703-708
    • Shepherd, T.G.1
  • 56
    • 80052840333 scopus 로고    scopus 로고
    • Prediction of Indian summer monsoon rainfall using Niño indices: A neural network approach
    • Shukla, R P., Tripathi, K C, Pandey, A. C. & Das, I. M. L. 2011 Prediction of Indian summer monsoon rainfall using Niño indices: a neural network approach. Atmos. Res. 102, 99-109.
    • (2011) Atmos. Res. , vol.102 , pp. 99-109
    • Shukla, R.P.1    Tripathi, K.C.2    Pandey, A.C.3    Das, I.M.L.4
  • 57
    • 85020502597 scopus 로고    scopus 로고
    • Refinement of the daily precipitation simulated by the CMIP5 models over the north of the Northeast of Brazil
    • Silva, G A. M. & Mendes, D. 2015 Refinement of the daily precipitation simulated by the CMIP5 models over the north of the Northeast of Brazil. Front. Environ. Sci. 3, 29.
    • (2015) Front. Environ. Sci. , vol.3 , pp. 29
    • Silva, G.A.M.1    Mendes, D.2
  • 58
    • 80054075342 scopus 로고    scopus 로고
    • Changes in summer monsoon rainfall in Upper Chao Phraya River Basin, Thailand
    • Singhrattna, N. & Babel, M. S. 2011 Changes in summer monsoon rainfall in Upper Chao Phraya River Basin, Thailand. Climate Res. 49, 155-168.
    • (2011) Climate Res. , vol.49 , pp. 155-168
    • Singhrattna, N.1    Babel, M.S.2
  • 59
    • 22944487273 scopus 로고    scopus 로고
    • Inter-annual and inter-decadal variability of Thailand summer monsoon season
    • Singhrattna, N, Rajagopalan, B., Kumar, K K & Clark, M. 2005a Inter-annual and inter-decadal variability of Thailand summer monsoon season. J. Climate. 18, 1697-1708.
    • (2005) J. Climate. , vol.18 , pp. 1697-1708
    • Singhrattna, N.1    Rajagopalan, B.2    Kumar, K.K.3    Clark, M.4
  • 61
    • 84856891582 scopus 로고    scopus 로고
    • Hydroclimate variability and long-lead forecasting of rainfall over Thailand by large scale atmospheric variables
    • Singhrattna, N., Babel, M. S. & Perret, S. R 2012 Hydroclimate variability and long-lead forecasting of rainfall over Thailand by large scale atmospheric variables. J. Hydrol. Sci 57, 26-41.
    • (2012) J. Hydrol. Sci , vol.57 , pp. 26-41
    • Singhrattna, N.1    Babel, M.S.2    Perret, S.R.3
  • 63
    • 78649516304 scopus 로고    scopus 로고
    • Forecasting of rainfall using ocean-atmospheric indices with Fuzzy neural technique
    • Srivastava, G, Panda, S. N, Mondal, P. & Liu, J. 2010 Forecasting of rainfall using ocean-atmospheric indices with Fuzzy neural technique. J. Hydrol. 395, 190-198.
    • (2010) J. Hydrol. , vol.395 , pp. 190-198
    • Srivastava, G.1    Panda, S.N.2    Mondal, P.3    Liu, J.4
  • 64
  • 65
    • 84985017340 scopus 로고    scopus 로고
    • Bias correction of regional climate model simulations for hydrological climate change impact studies: Review and evaluation of different methods
    • Teutschbein, C. & Seibert, F. 2012 Bias correction of regional climate model simulations for hydrological climate change impact studies: review and evaluation of different methods. J. Hydrol. 29, 456-457.
    • (2012) J. Hydrol. , vol.29 , pp. 456-457
    • Teutschbein, C.1    Seibert, F.2
  • 66
    • 0002133998 scopus 로고
    • The rational relationship between heating degree days and temperature
    • Thom, H. C. S. 1954 The rational relationship between heating degree days and temperature. Mon. Weather Rev. 82 (1), 1-6.
    • (1954) Mon. Weather Rev. , vol.82 , Issue.1 , pp. 1-6
    • Thom, H.C.S.1
  • 67
    • 84869462162 scopus 로고    scopus 로고
    • Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping
    • Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. 2012 Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst Sci. 16, 3309-3314.
    • (2012) Hydrol. Earth Syst Sci. , vol.16 , pp. 3309-3314
    • Thrasher, B.1    Maurer, E.P.2    McKellar, C.3    Duffy, P.B.4
  • 68
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short term rainfall prediction models for real time flood forecasting
    • Toth, E., Brath, A. & Montanari, A. 2000 Comparison of short term rainfall prediction models for real time flood forecasting. J. Hydrol. 239, 132-147.
    • (2000) J. Hydrol. , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 69
    • 84989941497 scopus 로고    scopus 로고
    • Climate variability and change data and information for global public health
    • (K E. Pinkerton & W. N. Rom, eds). Springer, New York, USA
    • Trtanj, J. M. & Houston, T G 2014 Climate variability and change data and information for global public health. In: Global Climate Change and Public Health (K E. Pinkerton & W. N. Rom, eds). Springer, New York, USA.
    • (2014) Global Climate Change and Public Health
    • Trtanj, J.M.1    Houston, T.G.2
  • 70
    • 33947234637 scopus 로고    scopus 로고
    • Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. Land falling tropical storms
    • Tuleya, R E., Demaria, M. & Kuligowski, R. J. 2007 Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. land falling tropical storms. Weather Forecast. 22, 56-70.
    • (2007) Weather Forecast , vol.22 , pp. 56-70
    • Tuleya, R.E.1    Demaria, M.2    Kuligowski, R.J.3
  • 71
    • 84873992358 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular soft computing methods
    • Wu, C. L. & Chau, K W. 2013 Prediction of rainfall time series using modular soft computing methods. J. Eng. Appl. Artif. Intell. 26, 997-1007.
    • (2013) J. Eng. Appl. Artif. Intell. , vol.26 , pp. 997-1007
    • Wu, C.L.1    Chau, K.W.2
  • 72
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
    • Wu, C. L., Chau, K W. & Fan, C. 2010 Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 389, 146-167.
    • (2010) J. Hydrol. , vol.389 , pp. 146-167
    • Wu, C.L.1    Chau, K.W.2    Fan, C.3
  • 73
    • 2442656316 scopus 로고    scopus 로고
    • Seasonal variability of the large-scale currents near the coast of Philippines
    • Yaremchuk, M. & Qu, T 2004 Seasonal variability of the large-scale currents near the coast of Philippines. J. Phys. Oceanogr. 34, 844-855.
    • (2004) J. Phys. Oceanogr. , vol.34 , pp. 844-855
    • Yaremchuk, M.1    Qu, T.2
  • 74
    • 84898843964 scopus 로고    scopus 로고
    • Empirical statistical modeling of rainfall prediction over Myanmar
    • Zaw, W. T & Naing, T T 2008 Empirical statistical modeling of rainfall prediction over Myanmar. World Acad. Sci. Eng. Tech. 2, 492-495.
    • (2008) World Acad. Sci. Eng. Tech. , vol.2 , pp. 492-495
    • Zaw, W.T.1    Naing, T.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.