메뉴 건너뛰기




Volumn 25, Issue 6, 2011, Pages 1653-1676

Identifying Prominent Explanatory Variables for Water Demand Prediction Using Artificial Neural Networks: A Case Study of Bangkok

Author keywords

Artificial neural networks; Bangkok; Explanatory variables; Prediction accuracy; Sensitivity analysis; Water demand prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BANGKOK; EXPLANATORY VARIABLES; PREDICTION ACCURACY; WATER DEMAND PREDICTION;

EID: 79952708249     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-010-9766-x     Document Type: Article
Times cited : (78)

References (21)
  • 1
    • 39549095416 scopus 로고    scopus 로고
    • Peak daily water demand forecasting modeling using artificial neural networks
    • Adamowski J (2008) Peak daily water demand forecasting modeling using artificial neural networks. J Water Resour Plan Manage 134(2): 119-128.
    • (2008) J Water Resour Plan Manage , vol.134 , Issue.2 , pp. 119-128
    • Adamowski, J.1
  • 2
    • 77953664231 scopus 로고    scopus 로고
    • ADB and MWA, Available at
    • ADB and MWA (2009) ABB drives in urban water cycle (information brochure). Available at http://www05. abb. com/global/scot/scot216. nsf/veritydisplay/5325e072f09642a6c12571e800305fa5/$File/MWA_urban_water_cycle_low. pdf.
    • (2009) ABB drives in urban water cycle (information brochure)
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology I: preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000) Artificial neural networks in hydrology I: preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 33947670877 scopus 로고    scopus 로고
    • A multivariate econometric approach for domestic water demand modeling: an application to Kathmandu, Nepal
    • Babel MS, Gupta AD, Pradhan P (2007) A multivariate econometric approach for domestic water demand modeling: an application to Kathmandu, Nepal. Water Resour Manag 21: 573-589.
    • (2007) Water Resour Manag , vol.21 , pp. 573-589
    • Babel, M.S.1    Gupta, A.D.2    Pradhan, P.3
  • 5
    • 13644268763 scopus 로고    scopus 로고
    • Short term municipal water demand forecasting
    • Bougadis J, Adomowski K, Diduch R (2005) Short term municipal water demand forecasting. J Hydrol Eng 19(1): 137-148.
    • (2005) J Hydrol Eng , vol.19 , Issue.1 , pp. 137-148
    • Bougadis, J.1    Adomowski, K.2    Diduch, R.3
  • 6
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources application. Part 1-background and methodology
    • Bowden GJ, Dandy GC, Maier HR (2005) Input determination for neural network models in water resources application. Part 1-background and methodology. J Hydrol 301(2005): 75-92.
    • (2005) J Hydrol , vol.301 , Issue.2005 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 8
    • 60849104783 scopus 로고    scopus 로고
    • Evaluation of artificial neural network techniques for municipal water consumption modeling
    • Firat M, Yurdusev MA, Turan ME (2009) Evaluation of artificial neural network techniques for municipal water consumption modeling. Water Resour Manag 23: 617-632.
    • (2009) Water Resour Manag , vol.23 , pp. 617-632
    • Firat, M.1    Yurdusev, M.A.2    Turan, M.E.3
  • 9
    • 77649187529 scopus 로고    scopus 로고
    • Comparitive analysis for neural network techniques for predicting water consumption time series
    • Firat M, Turan ME, Yurdusev MA (2010) Comparitive analysis for neural network techniques for predicting water consumption time series. J Hydrol 384(12): 46-51.
    • (2010) J Hydrol , vol.384 , Issue.12 , pp. 46-51
    • Firat, M.1    Turan, M.E.2    Yurdusev, M.A.3
  • 10
    • 39549111033 scopus 로고    scopus 로고
    • Urban water demand forecasting with a dynamic artificial neural network model
    • Ghiassi M, Zimbra D, Saidane H (2008) Urban water demand forecasting with a dynamic artificial neural network model. J Water Resour Plan Manage 134(2): 134-146.
    • (2008) J Water Resour Plan Manage , vol.134 , Issue.2 , pp. 134-146
    • Ghiassi, M.1    Zimbra, D.2    Saidane, H.3
  • 11
    • 78549256372 scopus 로고    scopus 로고
    • Predictive models for forecasting hourly urban water demand
    • Herrera M, Torgo L, Izquierdo J, Perez-Garcia R (2010) Predictive models for forecasting hourly urban water demand. J Hydrol 387(1-2): 141-150.
    • (2010) J Hydrol , vol.387 , Issue.1-2 , pp. 141-150
    • Herrera, M.1    Torgo, L.2    Izquierdo, J.3    Perez-Garcia, R.4
  • 12
    • 33846820421 scopus 로고    scopus 로고
    • An artificial neural network model for mountainous water resources management: the case of Cyprus mountain watersheds
    • IIiadis LS, Maris F (2007) An artificial neural network model for mountainous water resources management: the case of Cyprus mountain watersheds. Environ Model Softw 22(7): 1066-1072.
    • (2007) Environ Model Softw , vol.22 , Issue.7 , pp. 1066-1072
    • Iiiadis, L.S.1    Maris, F.2
  • 13
    • 0036640826 scopus 로고    scopus 로고
    • Short term water demand forecast modeling techniques-conventional methods vs. AI
    • Jain A, Ormbsee L (2002) Short term water demand forecast modeling techniques-conventional methods vs. AI. J Am Waterworks Assoc 94(7): 64-72.
    • (2002) J Am Waterworks Assoc , vol.94 , Issue.7 , pp. 64-72
    • Jain, A.1    Ormbsee, L.2
  • 14
    • 0035494446 scopus 로고    scopus 로고
    • Short term water demand forecast modeling at IIT Kanpur using artificial neural networks
    • Jain A, Varshney AK, Joshi UC (2001) Short term water demand forecast modeling at IIT Kanpur using artificial neural networks. Water Resour Manag 22(6): 299-321.
    • (2001) Water Resour Manag , vol.22 , Issue.6 , pp. 299-321
    • Jain, A.1    Varshney, A.K.2    Joshi, U.C.3
  • 15
    • 0040527546 scopus 로고
    • Optimization of the neural net connectivity pattern using a back propagation algorithm
    • Kumar KK (1993) Optimization of the neural net connectivity pattern using a back propagation algorithm. Neurocomputing 5: 273-286.
    • (1993) Neurocomputing , vol.5 , pp. 273-286
    • Kumar, K.K.1
  • 16
    • 0037879584 scopus 로고    scopus 로고
    • Forecast of water demand in Weinan city in China using WDF-ANN model
    • Lui J, Savenije H, Xu J (2003) Forecast of water demand in Weinan city in China using WDF-ANN model. Phys Chem Earth 28(2003): 219-224.
    • (2003) Phys Chem Earth , vol.28 , Issue.2003 , pp. 219-224
    • Lui, J.1    Savenije, H.2    Xu, J.3
  • 17
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15(1): 101-123.
    • (2000) Environ Model Softw , vol.15 , Issue.1 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 18
    • 49249134171 scopus 로고    scopus 로고
    • MWA, Metropolitan Waterworks Authority (MWA), Bangkok
    • MWA (2008) Annual report 2007. Metropolitan Waterworks Authority (MWA), Bangkok.
    • (2008) Annual report 2007
  • 19
    • 79952698121 scopus 로고    scopus 로고
    • Neurosolutions, Gainesville, FL 32606
    • Neurosolutions (2008) NeuroDimension Incorporated, Gainesville, FL 32606.
    • (2008) NeuroDimension Incorporated


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.