메뉴 건너뛰기




Volumn 16, Issue 4, 2012, Pages 1151-1169

Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia

Author keywords

[No Author keywords available]

Indexed keywords

COMPARISON ANALYSIS; DATA-DRIVEN MODELING; DYNAMIC NEURAL NETWORKS; FORECASTING ACCURACY; HYDROLOGICAL PROCESS; INPUT DELAY NEURAL NETWORKS; MALAYSIA; MEMORYLESS; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; NEURAL NETWORK MODEL; NONLINEAR STATICS; RADIAL BASIS FUNCTION NEURAL NETWORKS; RAINFALL FORECASTING; RAINFALL SERIES; RIVER BASINS; STATIC AND DYNAMIC; STATIC NETWORKS; STATIC NEURAL NETWORKS; TEMPORAL DIMENSIONS; TEMPORAL RELATIONSHIPS; TIME HORIZONS; TIME SERIES MODELING; TRAINING AND TESTING;

EID: 84859572047     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-16-1151-2012     Document Type: Article
Times cited : (58)

References (54)
  • 1
    • 34648849221 scopus 로고    scopus 로고
    • Neural network modelling of non-linear hydrological relationships
    • Abrahart, R. J. and See, L. M.: Neural network modelling of nonlinear hydrological relationships, Hydrol. Earth Syst. Sci., 11, 1563-1579, doi:10.5194/hess-11-1563-2007, 2007. (Pubitemid 47460308)
    • (2007) Hydrology and Earth System Sciences , vol.11 , Issue.5 , pp. 1563-1579
    • Abrahart, R.J.1    See, L.M.2
  • 2
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the Ganges river basin
    • doi:10.5194/hess-13-1607-2009
    • Akhtar, M. K., Corzo, G. A., van Andel, S. J., and Jonoski, A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607-1618, doi:10.5194/hess-13- 1607-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1607-1618
    • Akhtar, M.K.1    Corzo, G.A.2    Van Andel, S.J.3    Jonoski, A.4
  • 3
    • 27744588537 scopus 로고    scopus 로고
    • Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn
    • DOI 10.1016/j.ecolmodel.2005.03.007, PII S0304380005002036
    • Altunkaynak, A., Özger,M., and Çakmakçi,M.: Fuzzy LogicModeling of the Dissolved Oxygen Fluctuations in Golden Horn, Ecol. Model., 189, 436-446, 2005a. (Pubitemid 41630728)
    • (2005) Ecological Modelling , vol.189 , Issue.3-4 , pp. 436-446
    • Altunkaynak, A.1    Ozger, M.2    Cakmakci, M.3
  • 4
    • 27744524615 scopus 로고    scopus 로고
    • Water consumption prediction of Istanbul City by using fuzzy logic approach
    • DOI 10.1007/s11269-005-7371-1
    • Altunkaynak, A., Özger, M., and Çakmakçi, M.: Water Consumption Prediction of Istanbul City by Using Fuzzy Logic Approach, Water Resour. Mange., 19, 641-654, 2005b. (Pubitemid 41600185)
    • (2005) Water Resources Management , vol.19 , Issue.5 , pp. 641-654
    • Altunkaynak, A.1    Ozger, M.2    Cakmakci, M.3
  • 5
    • 33344463490 scopus 로고    scopus 로고
    • Water level forecasting through fuzzy logic and artificial neural network approaches
    • Alvisi, S., Mascellani, G., Franchini, M., and Bárdossy, A.: Water level forecasting through fuzzy logic and artificial neural network approaches, Hydrol. Earth Syst. Sci., 10, 1-17, doi:10.5194/hess-10-1-2006, 2006. (Pubitemid 43286038)
    • (2006) Hydrology and Earth System Sciences , vol.10 , Issue.1 , pp. 1-17
    • Alvisi, S.1    Mascellani, G.2    Franchini, M.3    Bardossy, A.4
  • 6
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil, F. and Lauzon, N.: Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions, Hydrol. Earth Syst. Sci., 8, 940-958, doi:10.5194/hess-8-940-2004, 2004. (Pubitemid 40294956)
    • (2004) Hydrology and Earth System Sciences , vol.8 , Issue.5 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 10
    • 77950360747 scopus 로고    scopus 로고
    • An experiment on the evolution of an ensemble of neural networks for streamflow forecasting
    • doi:10.5194/hess-14-603-2010
    • Boucher, M.-A., Laliberté, J.-P., and Anctil, F.: An experiment on the evolution of an ensemble of neural networks for streamflow forecasting, Hydrol. Earth Syst. Sci., 14, 603-612, doi:10.5194/hess-14-603-2010, 2010.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 603-612
    • Boucher, M.-A.1    Laliberté, J.-P.2    Anctil, F.3
  • 11
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • DOI 10.1016/j.jhydrol.2004.06.021, PII S0022169404002987
    • Bowden, G. J., Dandy, G. C., and Maier, H. R.: Input determination for neural network models in water resources applications. Part 1 - Background and methodology, J. Hydrol., 301, 75-92, 2005. (Pubitemid 39645410)
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 14
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with neural network model
    • Campolo, M., Andreussi, P., and Soldati, A.: River flood forecasting with neural network model, Water Resour. Res., 35, 1191-1197, 1999.
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 15
    • 0028552507 scopus 로고
    • Evaluating an autoregressive model for stream flow forecasting
    • Cheng, Y.: Evaluating an autoregressive model for stream flow forecasting, in: Proc. Hydraulic Eng. Conf., 1105-1109, 1994.
    • (1994) Proc. Hydraulic Eng. Conf. , pp. 1105-1109
    • Cheng, Y.1
  • 16
    • 0343360188 scopus 로고
    • Applications of Kalman filter to hydrology, hydraulics, and water resources
    • Pittsburgh, Dept. of Civil Engineering, University of Pittsburgh Press
    • Chiu, C. L. (Ed.): Applications of Kalman filter to hydrology, hydraulics, and water resources. Proceedings of AGU Chapman Conference, Pittsburgh, Dept. of Civil Engineering, University of Pittsburgh Press, 1978.
    • (1978) Proceedings of AGU Chapman Conference
    • Chiu, C.L.1
  • 17
    • 33745941576 scopus 로고    scopus 로고
    • Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network
    • DOI 10.1016/j.jbiotec.2005.11.002, PII S0168165605006917
    • Cinar, O., Hasar, H., and Kinaci, C.: Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network, J. Biotech., 123, 204-209, 2006. (Pubitemid 44294310)
    • (2006) Journal of Biotechnology , vol.123 , Issue.2 , pp. 204-209
    • Cinar, O.1    Hasar, H.2    Kinaci, C.3
  • 18
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • DOI 10.1016/S0022-1694(00)00214-6, PII S0022169400002146
    • Coulibaly, P., Anctil, F., and Bobée, B.: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230, 244-257, 2000a. (Pubitemid 30319494)
    • (2000) Journal of Hydrology , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 20
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • DOI 10.1061/(ASCE)1084-0699(2001)6:5(367)
    • Coulibaly, P., Anctil, F., and Bobée, B.: Multivariate Reservoir Inflow Forecasting Using Temporal Neural Networks, ASCE J. Hydrol. Eng., 65, 367-376, 2001. (Pubitemid 32818650)
    • (2001) Journal of Hydrologic Engineering , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 21
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • de Vos, N. J. and Rientjes, T. H. M.: Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation, Hydrol. Earth Syst. Sci., 9, 111-126, doi:10.5194/hess-9-111-2005, 2005. (Pubitemid 41122744)
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.1-2 , pp. 111-126
    • De Vos, N.J.1    Rientjes, T.H.M.2
  • 22
    • 79952665438 scopus 로고    scopus 로고
    • Generalized versus nongeneralized neural network model for multi-lead inflow forecasting at Aswan High Dam
    • doi:10.5194/hess-15-841-2011
    • El-Shafie, A. and Noureldin, A.: Generalized versus nongeneralized neural network model for multi-lead inflow forecasting at Aswan High Dam, Hydrol. Earth Syst. Sci., 15, 841-858, doi:10.5194/hess-15-841-2011, 2011.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , pp. 841-858
    • El-Shafie, A.1    Noureldin, A.2
  • 23
  • 24
    • 79960851974 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia
    • El-Shafie, A., Jaafer, O., and Seyed, A.: Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia, Int. J. Phys. Sci., 6, 2875-2888, 2011b.
    • (2011) Int. J. Phys. Sci. , vol.6 , pp. 2875-2888
    • El-Shafie, A.1    Jaafer, O.2    Seyed, A.3
  • 25
    • 79957945389 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt
    • El-Shafie, A. H., El-Shafie, A., El Mazoghi, H. G., Shehata, A., and Taha, M.R.: Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt, Int. J. Phys. Sci., 6, 1306-1316, 2011c.
    • (2011) Int. J. Phys. Sci. , vol.6 , pp. 1306-1316
    • El-Shafie, A.H.1    El-Shafie, A.2    El Mazoghi, H.G.3    Shehata, A.4    Taha, M.R.5
  • 28
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan, M. and Menhaj, M.: Training Feedforward Networks with the Marquardt Algorithm, IEEE T. Neural Networ., 5, 989-993, 1994
    • (1994) IEEE T. Neural Networ. , vol.5 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 31
    • 84859589426 scopus 로고    scopus 로고
    • Flood mitigation and flood risk management in Malaysia
    • Hiew, K. L.: Flood mitigation and flood risk management in Malaysia, Journal of Floodplain Risk Management, 11, 1205-1216, 1996.
    • (1996) Journal of Floodplain Risk Management , vol.11 , pp. 1205-1216
    • Hiew, K.L.1
  • 32
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • DOI 10.1029/95WR01955
    • Hsu, K. L., Gupta, H. V., and Sorooshian, S.: Artificial neural network modeling of rainfall-rainoff process, Water Resour. Res., 31, 2517-2530, 1995. (Pubitemid 26475080)
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Kuo-Lin Hsu1    Gupta, H.V.2    Sorooshian, S.3
  • 33
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok, Thailand
    • doi:10.5194/hess-13-1413-2009
    • Hung, N. Q., Babel, M. S., Weesakul, S., and Tripathi, N. K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand, Hydrol. Earth Syst. Sci., 13, 1413-1425, doi:10.5194/hess-13-1413-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 36
    • 63149104793 scopus 로고    scopus 로고
    • Multi-criteria validation of artificial neural network rainfall-runoff modeling
    • doi:10.5194/hess-13-411-2009
    • Modarres, R.: Multi-criteria validation of artificial neural network rainfall-runoff modeling, Hydrol. Earth Syst. Sci., 13, 411-421, doi:10.5194/hess-13-411-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 411-421
    • Modarres, R.1
  • 37
    • 84865634266 scopus 로고    scopus 로고
    • Water quality prediction model utilizing integrated wavelet-ANFIS model with cross validation
    • in press, doi:10.1007/s00521-010-0486-1, 2010a
    • Najah, A., El-Shafie, A., Karim, O. A., and Jaafar, O.: Water Quality Prediction Model Utilizing Integrated Wavelet-ANFIS Model with Cross Validation, Neural. Comput. Appl., in press, doi:10.1007/s00521-010-0486-1, 2010a.
    • Neural. Comput. Appl.
    • Najah, A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 38
    • 77956684693 scopus 로고    scopus 로고
    • Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters
    • Najah, A., Elshafie, A., Karim, O. A., and Jaffar, O.: Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters, Eng. Int. Syst., 4, 221-231, 2010b.
    • (2010) Eng. Int. Syst. , vol.4 , pp. 221-231
    • Najah, A.1    Elshafie, A.2    Karim, O.A.3    Jaffar, O.4
  • 39
    • 80052193257 scopus 로고    scopus 로고
    • Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations
    • doi:10.5194/hess-15-2693-2011
    • Najah, A., El-Shafie, A., Karim, O. A., and Jaafar, O.: Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations, Hydrol. Earth Syst. Sci., 15, 2693-2708, doi:10.5194/hess-15-2693-2011, 2011.
    • (2011) Hydrol. Earth Syst. Sci. , vol.15 , pp. 2693-2708
    • Najah, A.1    El-Shafie, A.2    Karim, O.A.3    Jaafar, O.4
  • 40
  • 42
    • 84859587942 scopus 로고    scopus 로고
    • GPS/INS integration utilizing dynamic neural network for vehicular navigation
    • Elsevier
    • Noureldin, A., El-Shafie, A., and Bayoumi, A.: GPS/INS Integration Utilizing Dynamic Neural Network for Vehicular Navigation, Information Fusion, Elsevier, 11, 317-327, 2011.
    • (2011) Information Fusion , vol.11 , pp. 317-327
    • Noureldin, A.1    El-Shafie, A.2    Bayoumi, A.3
  • 45
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for scheduling of hydroelectric power systems
    • Saad, M., Bigras, P., Turgeon, A., and Duquette, R.: Fuzzy learning decomposition for scheduling of hydroelectric power systems Water Resour. Res., 32, 179-186, 1996.
    • (1996) Water Resour. Res. , vol.32 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 46
    • 0033535432 scopus 로고    scopus 로고
    • Non-linear rainfall runoff model using artificial neural network
    • Sajikumar, N. and Thandaveswara, B. S.: Non-linear rainfall runoff model using artificial neural network J. Hydrol., 216, 32-35, 1999.
    • (1999) J. Hydrol. , vol.216 , pp. 32-35
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 48
    • 0034174356 scopus 로고    scopus 로고
    • Hydrological forecasting using neural networks
    • DOI 10.1061/(ASCE)1084-0699(2000)5:2(180)
    • Thirumalaiah, K. and Deo, M. C.: Hydrological forecasting using neural networks, J. Hydrol. Eng., ASCE, 5, 180-189, 2000. (Pubitemid 30458090)
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 180-189
    • Thirumalaiah, K.1    Deo, M.C.2
  • 49
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using Artificial Neural Networks
    • DOI 10.1061/(ASCE)1084-0699(1999)4:3(232)
    • Tokar, A. S. and Johnson, P. A.: Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., ASCE, 4, 232-239, 1999. (Pubitemid 29437829)
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 50
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • DOI 10.1016/S0022-1694(00)00344-9, PII S0022169400003449
    • Toth, E., Montanari, A., and Brath, A.: Comparison of short-term rainfall prediction model for real-time flood forecasting, J. Hydrol., 239, 132-147, 2000. (Pubitemid 32012002)
    • (2000) Journal of Hydrology , vol.239 , Issue.1-4 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 51
    • 0029446195 scopus 로고
    • Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting
    • Weigend, S., Mangeas, M., and Srivastava, N.: Nonlinear gated experts for time series: discovering regimes and avoiding overfitting, Int. J. Neural Syst., 6, 373-99, 1995.
    • (1995) Int. J. Neural Syst. , vol.6 , pp. 373-99
    • Weigend, S.1    Mangeas, M.2    Srivastava, N.3
  • 52
    • 5044234787 scopus 로고    scopus 로고
    • Comparison of three updating schemes using artificial neural network in flow forecasting
    • Xiong, L., O'Connor, K. M., and Guo, S.: Comparison of three updating schemes using artificial neural network in flow forecasting, Hydrol. Earth Syst. Sci., 8, 247-255, doi:10.5194/hess- 8-247-2004, 2004. (Pubitemid 39337740)
    • (2004) Hydrology and Earth System Sciences , vol.8 , Issue.2 , pp. 247-255
    • Xiong, L.1    O'Connor, K.M.2    Guo, S.3
  • 53
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • DOI 10.1016/S0022-1694(98)00242-X, PII S002216949800242X
    • Zealand, C. M., Burn, D. H., and Simonovic, S. P.: Short term stream flow forecasting using artificial neural networks, J. Hydrol., 214, 32-48, 1999. (Pubitemid 29087395)
    • (1999) Journal of Hydrology , vol.214 , Issue.1-4 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 54
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • Zhang, G., Patuwo, B., and Hu, M.: Forecasting with artificial neural networks: The state of the art, Int. J. Forecast., 14, 35-62, 1998. (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Y. Hu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.