-
1
-
-
34648849221
-
Neural network modelling of non-linear hydrological relationships
-
Abrahart, R. J. and See, L. M.: Neural network modelling of nonlinear hydrological relationships, Hydrol. Earth Syst. Sci., 11, 1563-1579, doi:10.5194/hess-11-1563-2007, 2007. (Pubitemid 47460308)
-
(2007)
Hydrology and Earth System Sciences
, vol.11
, Issue.5
, pp. 1563-1579
-
-
Abrahart, R.J.1
See, L.M.2
-
2
-
-
77951015838
-
River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: Case study of the Ganges river basin
-
doi:10.5194/hess-13-1607-2009
-
Akhtar, M. K., Corzo, G. A., van Andel, S. J., and Jonoski, A.: River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin, Hydrol. Earth Syst. Sci., 13, 1607-1618, doi:10.5194/hess-13- 1607-2009, 2009.
-
(2009)
Hydrol. Earth Syst. Sci.
, vol.13
, pp. 1607-1618
-
-
Akhtar, M.K.1
Corzo, G.A.2
Van Andel, S.J.3
Jonoski, A.4
-
3
-
-
27744588537
-
Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn
-
DOI 10.1016/j.ecolmodel.2005.03.007, PII S0304380005002036
-
Altunkaynak, A., Özger,M., and Çakmakçi,M.: Fuzzy LogicModeling of the Dissolved Oxygen Fluctuations in Golden Horn, Ecol. Model., 189, 436-446, 2005a. (Pubitemid 41630728)
-
(2005)
Ecological Modelling
, vol.189
, Issue.3-4
, pp. 436-446
-
-
Altunkaynak, A.1
Ozger, M.2
Cakmakci, M.3
-
4
-
-
27744524615
-
Water consumption prediction of Istanbul City by using fuzzy logic approach
-
DOI 10.1007/s11269-005-7371-1
-
Altunkaynak, A., Özger, M., and Çakmakçi, M.: Water Consumption Prediction of Istanbul City by Using Fuzzy Logic Approach, Water Resour. Mange., 19, 641-654, 2005b. (Pubitemid 41600185)
-
(2005)
Water Resources Management
, vol.19
, Issue.5
, pp. 641-654
-
-
Altunkaynak, A.1
Ozger, M.2
Cakmakci, M.3
-
5
-
-
33344463490
-
Water level forecasting through fuzzy logic and artificial neural network approaches
-
Alvisi, S., Mascellani, G., Franchini, M., and Bárdossy, A.: Water level forecasting through fuzzy logic and artificial neural network approaches, Hydrol. Earth Syst. Sci., 10, 1-17, doi:10.5194/hess-10-1-2006, 2006. (Pubitemid 43286038)
-
(2006)
Hydrology and Earth System Sciences
, vol.10
, Issue.1
, pp. 1-17
-
-
Alvisi, S.1
Mascellani, G.2
Franchini, M.3
Bardossy, A.4
-
6
-
-
14344261493
-
Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
-
Anctil, F. and Lauzon, N.: Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions, Hydrol. Earth Syst. Sci., 8, 940-958, doi:10.5194/hess-8-940-2004, 2004. (Pubitemid 40294956)
-
(2004)
Hydrology and Earth System Sciences
, vol.8
, Issue.5
, pp. 940-958
-
-
Anctil, F.1
Lauzon, N.2
-
7
-
-
0028667967
-
Streamflow forecasting for Han River Basin, Korea
-
Awwad, H., Valdes, J., and Restrepo, P.: Streamflow forecasting for Han River Basin, Korea, J. Water Resources Planning Management, 120, 651-673, 1994. (Pubitemid 289212)
-
(1994)
Journal of Water Resources Planning & Management - ASCE
, vol.120
, Issue.5
, pp. 651-673
-
-
Awwad, H.M.1
Valdes, J.B.2
Restrepo, P.J.3
-
8
-
-
0038076657
-
-
1st Edn., International Thomson Publishing, MA, USA
-
Beale, H. and Demuth, H. B.: Neural Network Toolbox for Use with MATLAB, 1st Edn., International Thomson Publishing, MA, USA, 2001.
-
(2001)
Neural Network Toolbox for Use with MATLAB
-
-
Beale, H.1
Demuth, H.B.2
-
10
-
-
77950360747
-
An experiment on the evolution of an ensemble of neural networks for streamflow forecasting
-
doi:10.5194/hess-14-603-2010
-
Boucher, M.-A., Laliberté, J.-P., and Anctil, F.: An experiment on the evolution of an ensemble of neural networks for streamflow forecasting, Hydrol. Earth Syst. Sci., 14, 603-612, doi:10.5194/hess-14-603-2010, 2010.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 603-612
-
-
Boucher, M.-A.1
Laliberté, J.-P.2
Anctil, F.3
-
11
-
-
10644295753
-
Input determination for neural network models in water resources applications. Part 1 - Background and methodology
-
DOI 10.1016/j.jhydrol.2004.06.021, PII S0022169404002987
-
Bowden, G. J., Dandy, G. C., and Maier, H. R.: Input determination for neural network models in water resources applications. Part 1 - Background and methodology, J. Hydrol., 301, 75-92, 2005. (Pubitemid 39645410)
-
(2005)
Journal of Hydrology
, vol.301
, Issue.1-4
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
13
-
-
0003839287
-
-
Reading, MA, Addison-Wesley
-
Bras, R. and Rodriguez-Iturbe, I.: Random Functions and Hydrology. , Reading, MA, Addison-Wesley, 1985.
-
(1985)
Random Functions and Hydrology
-
-
Bras, R.1
Rodriguez-Iturbe, I.2
-
14
-
-
0032688155
-
River flood forecasting with neural network model
-
Campolo, M., Andreussi, P., and Soldati, A.: River flood forecasting with neural network model, Water Resour. Res., 35, 1191-1197, 1999.
-
(1999)
Water Resour. Res.
, vol.35
, pp. 1191-1197
-
-
Campolo, M.1
Andreussi, P.2
Soldati, A.3
-
15
-
-
0028552507
-
Evaluating an autoregressive model for stream flow forecasting
-
Cheng, Y.: Evaluating an autoregressive model for stream flow forecasting, in: Proc. Hydraulic Eng. Conf., 1105-1109, 1994.
-
(1994)
Proc. Hydraulic Eng. Conf.
, pp. 1105-1109
-
-
Cheng, Y.1
-
16
-
-
0343360188
-
Applications of Kalman filter to hydrology, hydraulics, and water resources
-
Pittsburgh, Dept. of Civil Engineering, University of Pittsburgh Press
-
Chiu, C. L. (Ed.): Applications of Kalman filter to hydrology, hydraulics, and water resources. Proceedings of AGU Chapman Conference, Pittsburgh, Dept. of Civil Engineering, University of Pittsburgh Press, 1978.
-
(1978)
Proceedings of AGU Chapman Conference
-
-
Chiu, C.L.1
-
17
-
-
33745941576
-
Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network
-
DOI 10.1016/j.jbiotec.2005.11.002, PII S0168165605006917
-
Cinar, O., Hasar, H., and Kinaci, C.: Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network, J. Biotech., 123, 204-209, 2006. (Pubitemid 44294310)
-
(2006)
Journal of Biotechnology
, vol.123
, Issue.2
, pp. 204-209
-
-
Cinar, O.1
Hasar, H.2
Kinaci, C.3
-
18
-
-
0034621379
-
Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
-
DOI 10.1016/S0022-1694(00)00214-6, PII S0022169400002146
-
Coulibaly, P., Anctil, F., and Bobée, B.: Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, J. Hydrol., 230, 244-257, 2000a. (Pubitemid 30319494)
-
(2000)
Journal of Hydrology
, vol.230
, Issue.3-4
, pp. 244-257
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
19
-
-
0034284659
-
Neural network-based long-term hydropower forecasting system
-
Coulibaly, P., Anctil, F., and Bobée, B.: Neural network-based longterm hydropower forecasting system, Comp. Aided Civ. Infrastruct. Engrg., 15, 355-364, 2000b. (Pubitemid 30605082)
-
(2000)
Computer-Aided Civil and Infrastructure Engineering
, vol.15
, Issue.5
, pp. 355-364
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
20
-
-
0035450182
-
Multivariate reservoir inflow forecasting using temporal neural networks
-
DOI 10.1061/(ASCE)1084-0699(2001)6:5(367)
-
Coulibaly, P., Anctil, F., and Bobée, B.: Multivariate Reservoir Inflow Forecasting Using Temporal Neural Networks, ASCE J. Hydrol. Eng., 65, 367-376, 2001. (Pubitemid 32818650)
-
(2001)
Journal of Hydrologic Engineering
, vol.6
, Issue.5
, pp. 367-376
-
-
Coulibaly, P.1
Anctil, F.2
Bobee, B.3
-
21
-
-
23744444467
-
Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
-
de Vos, N. J. and Rientjes, T. H. M.: Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation, Hydrol. Earth Syst. Sci., 9, 111-126, doi:10.5194/hess-9-111-2005, 2005. (Pubitemid 41122744)
-
(2005)
Hydrology and Earth System Sciences
, vol.9
, Issue.1-2
, pp. 111-126
-
-
De Vos, N.J.1
Rientjes, T.H.M.2
-
22
-
-
79952665438
-
Generalized versus nongeneralized neural network model for multi-lead inflow forecasting at Aswan High Dam
-
doi:10.5194/hess-15-841-2011
-
El-Shafie, A. and Noureldin, A.: Generalized versus nongeneralized neural network model for multi-lead inflow forecasting at Aswan High Dam, Hydrol. Earth Syst. Sci., 15, 841-858, doi:10.5194/hess-15-841-2011, 2011.
-
(2011)
Hydrol. Earth Syst. Sci.
, vol.15
, pp. 841-858
-
-
El-Shafie, A.1
Noureldin, A.2
-
23
-
-
79958705260
-
Performance of artificial neural network and regression techniques for rainfall-runoff prediction
-
El-Shafie, A., Mukhlisin, M., Najah, A. A., and Taha M. R.: Performance of artificial neural network and regression techniques for rainfall-runoff prediction, International Journal of the Physical Sciences, 6, 1997-2003, 2011a.
-
(2011)
International Journal of the Physical Sciences
, vol.6
, pp. 1997-2003
-
-
El-Shafie, A.1
Mukhlisin, M.2
Najah, A.A.3
Taha, M.R.4
-
24
-
-
79960851974
-
Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia
-
El-Shafie, A., Jaafer, O., and Seyed, A.: Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia, Int. J. Phys. Sci., 6, 2875-2888, 2011b.
-
(2011)
Int. J. Phys. Sci.
, vol.6
, pp. 2875-2888
-
-
El-Shafie, A.1
Jaafer, O.2
Seyed, A.3
-
25
-
-
79957945389
-
Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt
-
El-Shafie, A. H., El-Shafie, A., El Mazoghi, H. G., Shehata, A., and Taha, M.R.: Artificial neural network technique for rainfall forecasting applied to Alexandria, Egypt, Int. J. Phys. Sci., 6, 1306-1316, 2011c.
-
(2011)
Int. J. Phys. Sci.
, vol.6
, pp. 1306-1316
-
-
El-Shafie, A.H.1
El-Shafie, A.2
El Mazoghi, H.G.3
Shehata, A.4
Taha, M.R.5
-
26
-
-
61749103449
-
Efficient selection of inputs for artificial neural network models
-
December 2005, edited by: Zerger, A. and Argent, R. M.
-
Fernando, T. M. K. G., Maier, H. R., Dandy, G. C., and May, R. J.: Efficient selection of inputs for artificial neural network models, Proc. of MODSIM 2005 International Congress on Modelling and Simulation: Modelling and Simulation Society of Australia and New Zealand, December 2005, edited by: Zerger, A. and Argent, R. M., 1806-1812, 2005.
-
(2005)
Proc. of MODSIM 2005 International Congress on Modelling and Simulation: Modelling and Simulation Society of Australia and New Zealand
, pp. 1806-1812
-
-
Fernando, T.M.K.G.1
Maier, H.R.2
Dandy, G.C.3
May, R.J.4
-
27
-
-
84859593066
-
-
Malaysia, Technical report, Engineering and Research Center, Denver, Colorado
-
Gibson, K. and Dodge, R. A.: Hydraulic model studies of modification to Klang Gate Dam, Malaysia, Technical report, Engineering and Research Center, Denver, Colorado, 1983.
-
(1983)
Hydraulic Model Studies of Modification to Klang Gate Dam
-
-
Gibson, K.1
Dodge, R.A.2
-
28
-
-
0028543366
-
Training feedforward networks with the marquardt algorithm
-
Hagan, M. and Menhaj, M.: Training Feedforward Networks with the Marquardt Algorithm, IEEE T. Neural Networ., 5, 989-993, 1994
-
(1994)
IEEE T. Neural Networ.
, vol.5
, pp. 989-993
-
-
Hagan, M.1
Menhaj, M.2
-
31
-
-
84859589426
-
Flood mitigation and flood risk management in Malaysia
-
Hiew, K. L.: Flood mitigation and flood risk management in Malaysia, Journal of Floodplain Risk Management, 11, 1205-1216, 1996.
-
(1996)
Journal of Floodplain Risk Management
, vol.11
, pp. 1205-1216
-
-
Hiew, K.L.1
-
32
-
-
0029413797
-
Artificial neural network modeling of the rainfall-runoff process
-
DOI 10.1029/95WR01955
-
Hsu, K. L., Gupta, H. V., and Sorooshian, S.: Artificial neural network modeling of rainfall-rainoff process, Water Resour. Res., 31, 2517-2530, 1995. (Pubitemid 26475080)
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Kuo-Lin Hsu1
Gupta, H.V.2
Sorooshian, S.3
-
33
-
-
77951872732
-
An artificial neural network model for rainfall forecasting in Bangkok, Thailand
-
doi:10.5194/hess-13-1413-2009
-
Hung, N. Q., Babel, M. S., Weesakul, S., and Tripathi, N. K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand, Hydrol. Earth Syst. Sci., 13, 1413-1425, doi:10.5194/hess-13-1413-2009, 2009.
-
(2009)
Hydrol. Earth Syst. Sci.
, vol.13
, pp. 1413-1425
-
-
Hung, N.Q.1
Babel, M.S.2
Weesakul, S.3
Tripathi, N.K.4
-
34
-
-
0033197895
-
Application of ANN for reservoir inflow prediction and operation
-
Jain, S. K., Das, D., and Srivastava, D. K.: Application of ANN for reservoir inflow prediction and operation, J.Water Resour. Plann. Manage., ASCE, 125, 263-271, 1999.
-
(1999)
J. Water Resour. Plann. Manage., ASCE
, vol.125
, pp. 263-271
-
-
Jain, S.K.1
Das, D.2
Srivastava, D.K.3
-
36
-
-
63149104793
-
Multi-criteria validation of artificial neural network rainfall-runoff modeling
-
doi:10.5194/hess-13-411-2009
-
Modarres, R.: Multi-criteria validation of artificial neural network rainfall-runoff modeling, Hydrol. Earth Syst. Sci., 13, 411-421, doi:10.5194/hess-13-411-2009, 2009.
-
(2009)
Hydrol. Earth Syst. Sci.
, vol.13
, pp. 411-421
-
-
Modarres, R.1
-
37
-
-
84865634266
-
Water quality prediction model utilizing integrated wavelet-ANFIS model with cross validation
-
in press, doi:10.1007/s00521-010-0486-1, 2010a
-
Najah, A., El-Shafie, A., Karim, O. A., and Jaafar, O.: Water Quality Prediction Model Utilizing Integrated Wavelet-ANFIS Model with Cross Validation, Neural. Comput. Appl., in press, doi:10.1007/s00521-010-0486-1, 2010a.
-
Neural. Comput. Appl.
-
-
Najah, A.1
El-Shafie, A.2
Karim, O.A.3
Jaafar, O.4
-
38
-
-
77956684693
-
Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters
-
Najah, A., Elshafie, A., Karim, O. A., and Jaffar, O.: Evaluation the efficiency of radial basis function neural network for prediction of water quality parameters, Eng. Int. Syst., 4, 221-231, 2010b.
-
(2010)
Eng. Int. Syst.
, vol.4
, pp. 221-231
-
-
Najah, A.1
Elshafie, A.2
Karim, O.A.3
Jaffar, O.4
-
39
-
-
80052193257
-
Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations
-
doi:10.5194/hess-15-2693-2011
-
Najah, A., El-Shafie, A., Karim, O. A., and Jaafar, O.: Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations, Hydrol. Earth Syst. Sci., 15, 2693-2708, doi:10.5194/hess-15-2693-2011, 2011.
-
(2011)
Hydrol. Earth Syst. Sci.
, vol.15
, pp. 2693-2708
-
-
Najah, A.1
El-Shafie, A.2
Karim, O.A.3
Jaafar, O.4
-
40
-
-
0025399567
-
Identification and control of dynamical systems using neural networks
-
DOI 10.1109/72.80202
-
Narendra, K. and Parthasarathy, K.: Identification and control of dynamical systems using neural networks, Trans. Neural Networks, 1, 4-27, 1990. (Pubitemid 20689507)
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, Issue.1
, pp. 4-27
-
-
Narendra Kumpati, S.1
Parthasarathy Kannan2
-
41
-
-
33750605072
-
-
Engineering Applications of Artificial Intelligence 49-61, February
-
Noureldin, A., El-Shafie, A., and Taha, M. R.: Optimizing Neurofuzzy Modules for Data Fusion of Vehicular Navigation Systems Using Temporal Cross-validation, Engineering Applications of Artificial Intelligence, 49-61, February, 2007.
-
(2007)
Optimizing Neurofuzzy Modules for Data Fusion of Vehicular Navigation Systems Using Temporal Cross-validation
-
-
Noureldin, A.1
El-Shafie, A.2
Taha, M.R.3
-
42
-
-
84859587942
-
GPS/INS integration utilizing dynamic neural network for vehicular navigation
-
Elsevier
-
Noureldin, A., El-Shafie, A., and Bayoumi, A.: GPS/INS Integration Utilizing Dynamic Neural Network for Vehicular Navigation, Information Fusion, Elsevier, 11, 317-327, 2011.
-
(2011)
Information Fusion
, vol.11
, pp. 317-327
-
-
Noureldin, A.1
El-Shafie, A.2
Bayoumi, A.3
-
45
-
-
0029663691
-
Fuzzy learning decomposition for scheduling of hydroelectric power systems
-
Saad, M., Bigras, P., Turgeon, A., and Duquette, R.: Fuzzy learning decomposition for scheduling of hydroelectric power systems Water Resour. Res., 32, 179-186, 1996.
-
(1996)
Water Resour. Res.
, vol.32
, pp. 179-186
-
-
Saad, M.1
Bigras, P.2
Turgeon, A.3
Duquette, R.4
-
46
-
-
0033535432
-
Non-linear rainfall runoff model using artificial neural network
-
Sajikumar, N. and Thandaveswara, B. S.: Non-linear rainfall runoff model using artificial neural network J. Hydrol., 216, 32-35, 1999.
-
(1999)
J. Hydrol.
, vol.216
, pp. 32-35
-
-
Sajikumar, N.1
Thandaveswara, B.S.2
-
48
-
-
0034174356
-
Hydrological forecasting using neural networks
-
DOI 10.1061/(ASCE)1084-0699(2000)5:2(180)
-
Thirumalaiah, K. and Deo, M. C.: Hydrological forecasting using neural networks, J. Hydrol. Eng., ASCE, 5, 180-189, 2000. (Pubitemid 30458090)
-
(2000)
Journal of Hydrologic Engineering
, vol.5
, Issue.2
, pp. 180-189
-
-
Thirumalaiah, K.1
Deo, M.C.2
-
49
-
-
0033167344
-
Rainfall-runoff modeling using Artificial Neural Networks
-
DOI 10.1061/(ASCE)1084-0699(1999)4:3(232)
-
Tokar, A. S. and Johnson, P. A.: Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., ASCE, 4, 232-239, 1999. (Pubitemid 29437829)
-
(1999)
Journal of Hydrologic Engineering
, vol.4
, Issue.3
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
50
-
-
0034694775
-
Comparison of short-term rainfall prediction models for real-time flood forecasting
-
DOI 10.1016/S0022-1694(00)00344-9, PII S0022169400003449
-
Toth, E., Montanari, A., and Brath, A.: Comparison of short-term rainfall prediction model for real-time flood forecasting, J. Hydrol., 239, 132-147, 2000. (Pubitemid 32012002)
-
(2000)
Journal of Hydrology
, vol.239
, Issue.1-4
, pp. 132-147
-
-
Toth, E.1
Brath, A.2
Montanari, A.3
-
51
-
-
0029446195
-
Nonlinear gated experts for time series: Discovering regimes and avoiding overfitting
-
Weigend, S., Mangeas, M., and Srivastava, N.: Nonlinear gated experts for time series: discovering regimes and avoiding overfitting, Int. J. Neural Syst., 6, 373-99, 1995.
-
(1995)
Int. J. Neural Syst.
, vol.6
, pp. 373-99
-
-
Weigend, S.1
Mangeas, M.2
Srivastava, N.3
-
52
-
-
5044234787
-
Comparison of three updating schemes using artificial neural network in flow forecasting
-
Xiong, L., O'Connor, K. M., and Guo, S.: Comparison of three updating schemes using artificial neural network in flow forecasting, Hydrol. Earth Syst. Sci., 8, 247-255, doi:10.5194/hess- 8-247-2004, 2004. (Pubitemid 39337740)
-
(2004)
Hydrology and Earth System Sciences
, vol.8
, Issue.2
, pp. 247-255
-
-
Xiong, L.1
O'Connor, K.M.2
Guo, S.3
-
53
-
-
0033019602
-
Short term streamflow forecasting using artificial neural networks
-
DOI 10.1016/S0022-1694(98)00242-X, PII S002216949800242X
-
Zealand, C. M., Burn, D. H., and Simonovic, S. P.: Short term stream flow forecasting using artificial neural networks, J. Hydrol., 214, 32-48, 1999. (Pubitemid 29087395)
-
(1999)
Journal of Hydrology
, vol.214
, Issue.1-4
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
-
54
-
-
0003123930
-
Forecasting with artificial neural networks: The state of the art
-
PII S0169207097000447
-
Zhang, G., Patuwo, B., and Hu, M.: Forecasting with artificial neural networks: The state of the art, Int. J. Forecast., 14, 35-62, 1998. (Pubitemid 128340470)
-
(1998)
International Journal of Forecasting
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Eddy Patuwo, B.2
Y. Hu, M.3
|