메뉴 건너뛰기




Volumn 109, Issue , 2013, Pages 27-32

Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble

Author keywords

Ensembles; Evolutionary computation; Genetic algorithms; Multilayer perceptron; Time Series Forecasting

Indexed keywords

COMBINATION METHOD; CROSS VALIDATION; ENSEMBLES; EVOLUTIONARY ARTIFICIAL NEURAL NETWORKS; MULTI LAYER PERCEPTRON; ORGANIZATIONAL DECISION MAKING; REAL-WORLD TIME SERIES; TIME SERIES FORECASTING;

EID: 84875936673     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.02.053     Document Type: Article
Times cited : (69)

References (26)
  • 1
    • 65449138730 scopus 로고    scopus 로고
    • Editorial-hybrid soft computing and applications
    • Abraham A. Editorial-hybrid soft computing and applications. Int. J. Comput. Intell. Appl. 2009, 8.
    • (2009) Int. J. Comput. Intell. Appl. , vol.8
    • Abraham, A.1
  • 3
    • 79951856108 scopus 로고    scopus 로고
    • Evolutionary selection of hyperrectangles in nested generalized exemplar learning
    • García S., Derrac J., Luengo J., Carmona C.J., Herrera F. Evolutionary selection of hyperrectangles in nested generalized exemplar learning. Appl. Soft Comput. 2011, 11:3032-3045.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 3032-3045
    • García, S.1    Derrac, J.2    Luengo, J.3    Carmona, C.J.4    Herrera, F.5
  • 4
    • 78751621903 scopus 로고    scopus 로고
    • Neural visualization of network traffic data for intrusion detection
    • Corchado E., Herrero A. Neural visualization of network traffic data for intrusion detection. Appl. Soft Comput. 2011, 11:2042-2056.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2042-2056
    • Corchado, E.1    Herrero, A.2
  • 5
    • 82455199200 scopus 로고    scopus 로고
    • Soft computing methods applied to combination of one-class classifiers
    • Wilk T., Wozniak M. Soft computing methods applied to combination of one-class classifiers. Neurocomputing 2012, 75:185-193.
    • (2012) Neurocomputing , vol.75 , pp. 185-193
    • Wilk, T.1    Wozniak, M.2
  • 7
    • 0000082693 scopus 로고
    • Forecasting sales by exponentially weighted moving averages
    • Winters P.R. Forecasting sales by exponentially weighted moving averages. Manage. Sci. 1960, 6:324-342.
    • (1960) Manage. Sci. , vol.6 , pp. 324-342
    • Winters, P.R.1
  • 8
    • 79960633932 scopus 로고    scopus 로고
    • A linguistic approach to time series modeling with the help of f-transform
    • Štěpnička M., Dvořák A., Pavliska V., Vavříčková L. A linguistic approach to time series modeling with the help of f-transform. Fuzzy Sets Syst. 2011, 180(1):164-184.
    • (2011) Fuzzy Sets Syst. , vol.180 , Issue.1 , pp. 164-184
    • Štěpnička, M.1    Dvořák, A.2    Pavliska, V.3    Vavříčková, L.4
  • 9
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks. the state of the art
    • Zhang G., Eddy Patuwo B., Hu M.Y. Forecasting with artificial neural networks. the state of the art. Int. J. Forecast. 1998, 14(1):35-62.
    • (1998) Int. J. Forecast. , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Hu, M.Y.3
  • 11
    • 84871997305 scopus 로고    scopus 로고
    • Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm
    • Peralta J., Li X., Sanchez G., Sanchis, A. Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm. Neural Comput. Appl. 2013, 22(1):11-20.
    • (2013) Neural Comput. Appl. , vol.22 , Issue.1 , pp. 11-20
    • Peralta, J.1    Li, X.2    Sanchez, G.3    Sanchis, A.4
  • 12
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • Yao X. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 1993, 8(4):539-567.
    • (1993) Int. J. Intell. Syst. , vol.8 , Issue.4 , pp. 539-567
    • Yao, X.1
  • 13
    • 0742306458 scopus 로고    scopus 로고
    • Meta learning evolutionary artificial neural networks
    • Abraham A. Meta learning evolutionary artificial neural networks. Neurocomputing 2004, 56:1-38.
    • (2004) Neurocomputing , vol.56 , pp. 1-38
    • Abraham, A.1
  • 14
    • 34548180859 scopus 로고    scopus 로고
    • Evolution of neural networks for classification and regression
    • Rocha M., Cortez P., Neves J. Evolution of neural networks for classification and regression. Neurocomputing 2007, 70:2809-2816.
    • (2007) Neurocomputing , vol.70 , pp. 2809-2816
    • Rocha, M.1    Cortez, P.2    Neves, J.3
  • 16
    • 57349175053 scopus 로고    scopus 로고
    • Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation, GECCO '08, ACM, NY, USA
    • J. Peralta, G. Gutierrez, A. Sanchis, Adann: automatic design of artificial neural networks, in: Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation, GECCO '08, ACM, NY, USA, 2008, pp. 1863-1870.
    • (2008) Adann: automatic design of artificial neural networks , pp. 1863-1870
    • Peralta, J.1    Gutierrez, G.2    Sanchis, A.3
  • 17
    • 84872548900 scopus 로고    scopus 로고
    • Early stopping-but when?
    • G.B. Orr, K.-R. Müller (Eds.), Outgrowth of a 1996 NIPS Workshop, Springer
    • L. Prechelt, Early stopping-but when?, in: G.B. Orr, K.-R. Müller (Eds.), Neural Networks: Tricks of the Trade, Outgrowth of a 1996 NIPS Workshop, Springer, 1998, pp. 55-69.
    • (1998) Neural Networks: Tricks of the Trade , pp. 55-69
    • Prechelt, L.1
  • 18
    • 0002240319 scopus 로고
    • A k-sample slippage test for an extreme population
    • Mosteller F. A k-sample slippage test for an extreme population. Ann. Math. Stat. 1948, 19(1):58-65.
    • (1948) Ann. Math. Stat. , vol.19 , Issue.1 , pp. 58-65
    • Mosteller, F.1
  • 19
    • 34249654189 scopus 로고    scopus 로고
    • Cats benchmark time series prediction by Kalman smoother with cross-validated noise density
    • Sarkka S., Vehtari A., Lampinen J. Cats benchmark time series prediction by Kalman smoother with cross-validated noise density. Neurocomputing 2007, 70(13-15):2331-2341.
    • (2007) Neurocomputing , vol.70 , Issue.13-15 , pp. 2331-2341
    • Sarkka, S.1    Vehtari, A.2    Lampinen, J.3
  • 21
  • 22
    • 0039240492 scopus 로고    scopus 로고
    • Statistical mechanics of ensemble learning
    • Krogh A., Sollich P. Statistical mechanics of ensemble learning. Phys. Rev. E 1997, 55(1):811-825.
    • (1997) Phys. Rev. E , vol.55 , Issue.1 , pp. 811-825
    • Krogh, A.1    Sollich, P.2
  • 23
    • 85008014942 scopus 로고    scopus 로고
    • Evolving artificial neural network ensembles
    • Yao X., Islam M. Evolving artificial neural network ensembles. Comput. Intell. Mag. 2008, 3(1):31-42.
    • (2008) Comput. Intell. Mag. , vol.3 , Issue.1 , pp. 31-42
    • Yao, X.1    Islam, M.2
  • 25
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • Hyndman R., Koehler A. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22(4):679-688.
    • (2006) Int. J. Forecast. , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.1    Koehler, A.2
  • 26
    • 79959415599 scopus 로고    scopus 로고
    • Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines
    • IEEE, Barcelona, Spain
    • P. Cortez, Sensitivity analysis for time lag selection to forecast seasonal time series using neural networks and support vector machines, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2010), IEEE, Barcelona, Spain, 2010, pp. 3694-3701.
    • (2010) Proceedings of the International Joint Conference on Neural Networks (IJCNN 2010) , pp. 3694-3701
    • Cortez, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.