메뉴 건너뛰기




Volumn 15, Issue 3, 2013, Pages 829-848

Conjunction of SOM-based feature extraction method and hybrid wavelet-ANN approach for rainfall-runoff modeling

Author keywords

Clustering; Feed forward neural network; Rainfall runoff modeling; Self organizing map; Wavelet transform

Indexed keywords


EID: 84883575824     PISSN: 14647141     EISSN: None     Source Type: Journal    
DOI: 10.2166/hydro.2013.141     Document Type: Article
Times cited : (61)

References (55)
  • 2
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, J. F. 2008 Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 353, 247-266.
    • (2008) J. Hydrol , vol.353 , pp. 247-266
    • Adamowski, J.F.1
  • 3
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski, J. & Chan, H. F. 2011 A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 407, 28-40.
    • (2011) J. Hydrol , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 4
    • 84865047835 scopus 로고    scopus 로고
    • Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data
    • Adamowski, J., Chan, H. F., Prasher, S. O. & Sharda, V. N. 2012 Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J. Hydroinform. 14, 731-744.
    • (2012) J. Hydroinform , vol.14 , pp. 731-744
    • Adamowski, J.1    Chan, H.F.2    Prasher, S.O.3    Sharda, V.N.4
  • 5
    • 0034745667 scopus 로고    scopus 로고
    • Wavelet transform analysis of open channel wake flows
    • Addison, P. S., Murrary, K. B. & Watson, J. N. 2001 Wavelet transform analysis of open channel wake flows. J. Eng. Mech. 127, 58-70.
    • (2001) J. Eng. Mech , vol.127 , pp. 58-70
    • Addison, P.S.1    Murrary, K.B.2    Watson, J.N.3
  • 6
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of Lake Van by artificial neural networks
    • Altunkaynak, A. 2007 Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resour. Manage. 21, 399-408.
    • (2007) Water Resour. Manage , vol.21 , pp. 399-408
    • Altunkaynak, A.1
  • 7
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000a Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5, 115-123.
    • (2000) J. Hydrol. Eng , vol.5 , pp. 115-123
  • 8
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 2000b Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 5, 124-137.
    • (2000) J. Hydrol. Eng , vol.5 , pp. 124-137
  • 9
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem, A., Campbell, J. & Murtagh, F. 1998 Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Financ. 6, 5-12.
    • (1998) J. Comput. Intell. Financ , vol.6 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 10
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications
    • Bowden, G. J., Dandy, G. C. & Maier, H. R. 2005 Input determination for neural network models in water resources applications. J. Hydrol. 301, 75-92.
    • (2005) J. Hydrol , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 11
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden, G. J., Maier, H. R. & Dandy, G. C. 2002 Optimal division of data for neural network models in water resources applications. Water Resour. Res. 38, 1010-1011.
    • (2002) Water Resour. Res , vol.38 , pp. 1010-1011
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 12
    • 33751401308 scopus 로고    scopus 로고
    • Data pre-processing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    • Cannas, B., Fanni, A., See, L. & Sias, G. 2006 Data pre-processing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth. 31, 1164-1171.
    • (2006) Phys. Chem. Earth , vol.31 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 13
    • 70350422293 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: Commentary
    • Cereghino, R. & Park, Y. S. 2009 Review of the self-organizing map (SOM) approach in water resources: commentary. Environ. Model. Soft. 24, 945-947.
    • (2009) Environ. Model. Soft , vol.24 , pp. 945-947
    • Cereghino, R.1    Park, Y.S.2
  • 14
    • 77950860762 scopus 로고    scopus 로고
    • Clustering-based hybrid inundation model for forecasting flood inundation depths
    • Chang, L. C., Shen, H. Y., Wang, Y. F., Huang, J. Y. & Lin, Y. T. 2010 Clustering-based hybrid inundation model for forecasting flood inundation depths. J. Hydrol. 385, 257-268.
    • (2010) J. Hydrol , vol.385 , pp. 257-268
    • Chang, L.C.1    Shen, H.Y.2    Wang, Y.F.3    Huang, J.Y.4    Lin, Y.T.5
  • 15
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon, T. S., Park, Y. S., Moon, K. H. & Cha, E. Y. 1996 Patternizing communities by using an artificial neural network. Ecol. Model. 90, 69-78.
    • (1996) Ecol. Model , vol.90 , pp. 69-78
    • Chon, T.S.1    Park, Y.S.2    Moon, K.H.3    Cha, E.Y.4
  • 16
    • 0013406659 scopus 로고    scopus 로고
    • Using computational intelligence techniques to model subglacial water systems
    • Corne, S., Murray, T., Openshaw, S., See, L. & Turton, I. 1999 Using computational intelligence techniques to model subglacial water systems. J. Geogr. Syst. 1, 37-60.
    • (1999) J. Geogr. Syst , vol.1 , pp. 37-60
    • Corne, S.1    Murray, T.2    Openshaw, S.3    See, L.4    Turton, I.5
  • 17
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson, C. W. & Wilby, R. L. 2001 Hydrological modeling using artificial neural networks. Prog. Phys. Geogr. 25, 80-108.
    • (2001) Prog. Phys. Geogr , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 21
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik, K. 1989 Multilayer feed-forward networks are universal approximators. Neur. Netw. 2, 359-366.
    • (1989) Neur. Netw , vol.2 , pp. 359-366
    • Hornik, K.1
  • 22
    • 74149092556 scopus 로고    scopus 로고
    • Clustering spatial-temporal precipitation data using wavelet transform and selforganizing map neural network
    • Hsu, K. C. & Li, S. T. 2010 Clustering spatial-temporal precipitation data using wavelet transform and selforganizing map neural network. Adv. Water Resour. 33, 190-200.
    • (2010) Adv. Water Resour , vol.33 , pp. 190-200
    • Hsu, K.C.1    Li, S.T.2
  • 23
    • 33846820421 scopus 로고    scopus 로고
    • An artificial neural network model for mountainous water-resources management: The case of Cyprus mountainous watersheds
    • Iliadis, L. S. & Maris, F. 2007 An artificial neural network model for mountainous water-resources management: the case of Cyprus mountainous watersheds. Environ. Model. Soft. 22, 1066-1072.
    • (2007) Environ. Model. Soft , vol.22 , pp. 1066-1072
    • Iliadis, L.S.1    Maris, F.2
  • 24
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • Jain, A. & Srinivasulu, S. 2006 Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques. J. Hydrol. 317, 291-306.
    • (2006) J. Hydrol , vol.317 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 25
    • 34147214608 scopus 로고    scopus 로고
    • Interpolating monthly precipitation by self-organizing map (SOM) and multilayer perceptron (MLP)
    • Kalteh, A. M. & Berndtsson, R. 2007 Interpolating monthly precipitation by self-organizing map (SOM) and multilayer perceptron (MLP). Hydrol. Sci. J. 52, 305-317.
    • (2007) Hydrol. Sci. J , vol.52 , pp. 305-317
    • Kalteh, A.M.1    Berndtsson, R.2
  • 26
    • 40749144865 scopus 로고    scopus 로고
    • Review of the selforganizing map (SOM) approach in water resources: Analysis, modeling and application
    • Kalteh, A. M., Hjorth, P. & Berndtsson, R. 2008 Review of the selforganizing map (SOM) approach in water resources: analysis, modeling and application. Environ. Model. Soft. 23, 835-845.
    • (2008) Environ. Model. Soft , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 27
    • 77955768471 scopus 로고    scopus 로고
    • Daily suspended sediment estimation using neurowavelet models
    • Kisi, O. 2010 Daily suspended sediment estimation using neurowavelet models. Int. J. Earth Sci. 99 (6), 1471-1482.
    • (2010) Int. J. Earth Sci , vol.99 , Issue.6 , pp. 1471-1482
    • Kisi, O.1
  • 29
    • 0021617162 scopus 로고
    • Phonotopic maps insightful representation of phonological features for speech recognition
    • CA. IEEE Computer Society Press, Los Alamitos
    • Kohonen, T., Makisara, K. & Saramaki, T. 1984 Phonotopic maps insightful representation of phonological features for speech recognition. In: Proceedings of 7ICPR, International Conference on Pattern Recognition, CA. IEEE Computer Society Press, Los Alamitos, pp. 182-185.
    • (1984) Proceedings of 7ICPR, International Conference on Pattern Recognition , pp. 182-185
    • Kohonen, T.1    Makisara, K.2    Saramaki, T.3
  • 30
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relation for karstic spring. Part 2: Continuous wavelet and discrete orthogonal multi resolution analysis
    • Labat, D., Ababou, R. & Mangin, A. 2000 Rainfall-runoff relation for karstic spring. Part 2: Continuous wavelet and discrete orthogonal multi resolution analysis. J. Hydrol. 238, 149-178.
    • (2000) J. Hydrol , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 31
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation
    • Legates, D. R. & McCabe, G. J. 1999 Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35, 233-241.
    • (1999) Water Resour. Res , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 32
    • 33646564705 scopus 로고    scopus 로고
    • Identification of homogeneous regions for regional frequency analysis using the selforganizing map
    • Lin, G. F. & Chen, L. H. 2006 Identification of homogeneous regions for regional frequency analysis using the selforganizing map. J. Hydrol. 324, 1-9.
    • (2006) J. Hydrol , vol.324 , pp. 1-9
    • Lin, G.F.1    Chen, L.H.2
  • 33
    • 34249662794 scopus 로고    scopus 로고
    • A SOM-based approach to estimate design hyetographs of un-gauged sites
    • Lin, G. F. & Wu, M. C. 2007 A SOM-based approach to estimate design hyetographs of un-gauged sites. J. Hydrol. 339, 216-226.
    • (2007) J. Hydrol , vol.339 , pp. 216-226
    • Lin, G.F.1    Wu, M.C.2
  • 34
    • 84862663945 scopus 로고    scopus 로고
    • Multi-scale nonlinear model for monthly stream flow forecasting: A wavelet-based approach
    • Maheswaran, R. & Khosa, R. 2012 Multi-scale nonlinear model for monthly stream flow forecasting: a wavelet-based approach. J. Hydroinform. 14, 424-442.
    • (2012) J. Hydroinform , vol.14 , pp. 424-442
    • Maheswaran, R.1    Khosa, R.2
  • 35
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R. & Dandy, G. C. 2000 Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Soft. 15, 101-124.
    • (2000) Environ. Model. Soft , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 37
    • 0003554146 scopus 로고    scopus 로고
    • Math Works, Inc., Version 7. The Math Works, Inc., Natick
    • Math Works, Inc. 2010a MATLAB: User's Guide, Version 7. The Math Works, Inc., Natick.
    • (2010) MATLAB: User's Guide
  • 38
    • 84883568816 scopus 로고    scopus 로고
    • Math Works, Inc., Version 7. The Math Works, Inc., Natick
    • Math Works, Inc. 2010b MATLAB: SOM Toolbox (NCTOOL) User's Guide, Version 7. The Math Works, Inc., Natick.
    • (2010) MATLAB: SOM Toolbox (NCTOOL) User's Guide
  • 39
    • 78650507206 scopus 로고    scopus 로고
    • Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers
    • Mirbagheri, S. A., Nourani, V., Rajaee, T. & Alikhani, A. 2010 Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 55 (7), 1175-1189.
    • (2010) Hydrol. Sci. J , vol.55 , Issue.7 , pp. 1175-1189
    • Mirbagheri, S.A.1    Nourani, V.2    Rajaee, T.3    Alikhani, A.4
  • 40
    • 0346246585 scopus 로고    scopus 로고
    • Wavelets in time series analysis
    • Nason, G. P. & von Sachs, R. 1999 Wavelets in time series analysis. Philos. Trans. R. Soc. 357, 2511-2526.
    • (1999) Philos. Trans. R. Soc , vol.357 , pp. 2511-2526
    • Nason, G.P.1    Von Sachs, R.2
  • 41
    • 84991954378 scopus 로고    scopus 로고
    • Reply to comment on an ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani, V. 2009 Reply to comment on an ANN-based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 24, 370-371.
    • (2009) Hydrol. Process , vol.24 , pp. 370-371
    • Nourani, V.1
  • 42
    • 77952374286 scopus 로고    scopus 로고
    • Integrated artificial neural network for spatiotemporal modeling of rainfall-runoffsediment processes
    • Nourani, V. & Kalantari, O. 2010 Integrated artificial neural network for spatiotemporal modeling of rainfall-runoffsediment processes. Environ. Eng. Sci. 27, 411-422.
    • (2010) Environ. Eng. Sci , vol.27 , pp. 411-422
    • Nourani, V.1    Kalantari, O.2
  • 43
    • 34247205944 scopus 로고    scopus 로고
    • Liquid analogue model for laboratory simulation of rainfall-runoff process
    • Nourani, V., Monadjemi, P. & Singh, V. P. 2007 Liquid analogue model for laboratory simulation of rainfall-runoff process. J. Hydrol. Eng. 12, 246-255.
    • (2007) J. Hydrol. Eng , vol.12 , pp. 246-255
    • Nourani, V.1    Monadjemi, P.2    Singh, V.P.3
  • 44
    • 67649122251 scopus 로고    scopus 로고
    • An ANN based model for spatiotemporal groundwater level forecasting
    • Nourani, V., Mogaddam, A. A. & Nadiri, A. O. 2008 An ANN based model for spatiotemporal groundwater level forecasting. Hydrol. Process. 22, 5054-5066.
    • (2008) Hydrol. Process , vol.22 , pp. 5054-5066
    • Nourani, V.1    Mogaddam, A.A.2    Nadiri, A.O.3
  • 45
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-Wavelet approach for rainfall-runoff modelling
    • Nourani, V., Komasi, M. & Mano, A. 2009a A multivariate ANN-Wavelet approach for rainfall-runoff modelling. Water Resour. Manage. 23, 2877-2894.
    • (2009) Water Resour. Manage , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 46
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani, V., Alami, M. T. & Aminfar, M. H. 2009b A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 22, 466-472.
    • (2009) Eng. Appl. Artif. Intell , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 47
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani, V., Kisi, O. & Komasi, M. 2011 Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 402, 41-59.
    • (2011) J. Hydrol , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 48
    • 84862139051 scopus 로고    scopus 로고
    • Hybrid waveletgenetic programming approach to optimize ANN modeling of rainfall-runoff process
    • Nourani, V., Komasi, M. & Alami, M. T. 2012 Hybrid waveletgenetic programming approach to optimize ANN modeling of rainfall-runoff process. J. Hydrol. Eng. 16, 724-741.
    • (2012) J. Hydrol. Eng , vol.16 , pp. 724-741
    • Nourani, V.1    Komasi, M.2    Alami, M.T.3
  • 49
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal, T. & Cigizoglu, H. K. 2008 Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 358, 317-331.
    • (2008) J. Hydrol , vol.358 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 50
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal, T. & Kisi, O. 2007 Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 342, 199-212.
    • (2007) J. Hydrol , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 51
    • 65749094852 scopus 로고    scopus 로고
    • Runoff prediction using an integrated hybrid modelling scheme
    • Remesan, R., Shamim, M. A., Han, D. & Mathew, J. 2009 Runoff prediction using an integrated hybrid modelling scheme. J. Hydrol. 372, 48-60.
    • (2009) J. Hydrol , vol.372 , pp. 48-60
    • Remesan, R.1    Shamim, M.A.2    Han, D.3    Mathew, J.4
  • 53
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using waveletbootstrap-ANN (WBANN) hybrid approach
    • Tiwari, M. K. & Chatterjee, Ch. 2010 Development of an accurate and reliable hourly flood forecasting model using waveletbootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 394, 458-470.
    • (2010) J. Hydrol , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 54
    • 84856372643 scopus 로고    scopus 로고
    • Decision tree-based classifier combined with neural-based predictor for waterstage forecasts in a river basin during typhoons: A case study in Taiwan
    • Tsai, C. C., Lu, M. C. & Wei, C. C. 2012 Decision tree-based classifier combined with neural-based predictor for waterstage forecasts in a river basin during typhoons: a case study in Taiwan. Environ. Eng. Sci. 29, 108-116.
    • (2012) Environ. Eng. Sci , vol.29 , pp. 108-116
    • Tsai, C.C.1    Lu, M.C.2    Wei, C.C.3
  • 55
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data pre-processing techniques
    • Wu, C. L., Chau, K. W. & Li, Y. S. 2009 Predicting monthly streamflow using data-driven models coupled with data pre-processing techniques. Water Resour. Res. 45, W08432.
    • (2009) Water Resour. Res , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.