메뉴 건너뛰기




Volumn 26, Issue 1, 2015, Pages 52-70

Application of entropy concept for input selection of wavelet-ANN based rainfall-runoff modeling

Author keywords

Feature extraction; Feed forward neural network; Multi step ahead forecasting; Rainfall runoff modeling; Shannon entropy (information content); Wavelet transform

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA ACQUISITION; DATA SET; DECOMPOSITION; ENTROPY; GEOMORPHOLOGICAL RESPONSE; HYDROLOGICAL MODELING; PHYSICS; RAINFALL-RUNOFF MODELING; WATERSHED; WAVELET;

EID: 84943252067     PISSN: 17262135     EISSN: 16848799     Source Type: Journal    
DOI: 10.3808/jei.201500309     Document Type: Article
Times cited : (63)

References (42)
  • 2
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, J. (2008). Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol., 353(3-4), 247-266. http://dx.doi.org/10.1016/j.jhydrol.2008.02.013
    • (2008) J. Hydrol , vol.353 , Issue.3-4 , pp. 247-266
    • Adamowski, J.1
  • 3
    • 84865047835 scopus 로고    scopus 로고
    • Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data
    • Adamowski, J., Chan, H.F., Prasher, S.O., and Sharda, V.N. (2012). Comparison of multivariate adaptive regression splines with coupled wavelet transform artificial neural networks for runoff forecasting in Himalayan micro-watersheds with limited data. J. Hydroinf., 14(3), 731-744. http://dx.doi.org/10.2166/hydro.2011.044
    • (2012) J. Hydroinf , vol.14 , Issue.3 , pp. 731-744
    • Adamowski, J.1    Chan, H.F.2    Prasher, S.O.3    Sharda, V.N.4
  • 4
    • 84944836511 scopus 로고
    • Entropy in the assessment of uncertainty in hydrologic systems and models
    • Amorocho, J., and Espildora, B. (1973). Entropy in the assessment of uncertainty in hydrologic systems and models. Water Resour. Res., 9(6), 1551-1522. http://dx.doi.org/10.1029/WR009i006p01511
    • (1973) Water Resour. Res , vol.9 , Issue.6 , pp. 1522-1551
    • Amorocho, J.1    Espildora, B.2
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000). Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng., 5(2), 124-137. http://dx. doi.org/10.1061/(ASCE)1084-0699(2000)5:2(124)
    • (2000) J. Hydrol. Eng , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem, A., Campbell, J., and Murtagh, F. (1998). Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Finance, 6(2), 5-12.
    • (1998) J. Comput. Intell. Finance , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 8
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Phys
    • Cannas, B., Fanni, A., See, L., and Sias, G. (2006). Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Phys. Chem. Earth (A,B,C), 31(18), 1164-1171. http://dx.doi.org/10.1016/j.pce.2006.03.020
    • (2006) Chem. Earth (A,B,C) , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 9
    • 0019103575 scopus 로고
    • Hydrological networks: Information transmission
    • Caselton, W.F., and Husain, T. (1980). Hydrological networks: Information transmission. J. Water Resour. Plann. Manage., 106(WR2), 503-520.
    • (1980) J. Water Resour. Plann. Manage , vol.106 , Issue.WR2 , pp. 503-520
    • Caselton, W.F.1    Husain, T.2
  • 10
    • 33846807570 scopus 로고    scopus 로고
    • Multi-step-ahead neural networks for flood forecasting
    • Chang, F.J., Chiang, Y.M., and Chang, L.C. (2007). Multi-step-ahead neural networks for flood forecasting. Hydrol. Sci. J., 52(1), 114-130. http://dx.doi.org/10.1623/hysj.52.1.114
    • (2007) Hydrol. Sci. J , vol.52 , Issue.1 , pp. 114-130
    • Chang, F.J.1    Chiang, Y.M.2    Chang, L.C.3
  • 12
    • 0039580836 scopus 로고    scopus 로고
    • Ordering univariate distributions by entropy and variance
    • Ebrahimi, N., Maasoumi, E., and Soofi, E.S. (1999). Ordering univariate distributions by entropy and variance. J. Econ., 90(2), 317-336. http://dx.doi.org/10.1016/S0304-4076(98)00046-3
    • (1999) J. Econ , vol.90 , Issue.2 , pp. 317-336
    • Ebrahimi, N.1    Maasoumi, E.2    Soofi, E.S.3
  • 13
    • 35848938708 scopus 로고    scopus 로고
    • Monomodal image registration using mutual information based methods
    • Gao, Z., Gu, B., and Lin, J. (2008). Monomodal image registration using mutual information based methods. Image Vision Comput., 26(2), 164-173. http://dx.doi.org/10.1016/j.imavis.2006.08.002
    • (2008) Image Vision Comput , vol.26 , Issue.2 , pp. 164-173
    • Gao, Z.1    Gu, B.2    Lin, J.3
  • 14
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan, M.T., and Menhaj, M.B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks, 5(6), 989-993. http://dx.doi.org/10.1109/72.329697
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 16
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feed forward networks are universal approximators. Neural Networks, 2(5), 359-366. http://dx.doi.org/10.1016/0893-6080(89)90020-8
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 17
    • 0027079180 scopus 로고
    • Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resour
    • Krstanovic, P.F., and Singh, V.P. (1992). Evaluation of rainfall networks using entropy: I. Theoretical development. Water Resour. Manage., 6(4), 279-293. http://dx.doi.org/10.1007/BF00872281
    • (1992) Manage , vol.6 , Issue.4 , pp. 279-293
    • Krstanovic, P.F.1    Singh, V.P.2
  • 18
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1. A review of concepts
    • Labat, D. (2005). Recent advances in wavelet analyses: Part 1. A review of concepts. J. Hydrol., 314(1-4), 275-288. http://dx.doi.org/10.1016/j.jhydrol.2005.04.003
    • (2005) J. Hydrol , vol.314 , Issue.1-4 , pp. 275-288
    • Labat, D.1
  • 19
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness- of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates, D.R., and McCabe, G.J. (1999). Evaluating the use of "goodness- of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35(1), 233-241. http://dx.doi.org/10.1029/1998WR900018
    • (1999) Water Resour. Res , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 20
    • 0000873069 scopus 로고
    • A method for the solution of certain non-linear problems in least squares
    • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Q. Appl. Math., 2(2), 164-168.
    • (1944) Q. Appl. Math , vol.2 , Issue.2 , pp. 164-168
    • Levenberg, K.1
  • 21
    • 84862663945 scopus 로고    scopus 로고
    • Multiscale nonlinear model for monthly stream flow forecasting: A wavelet-based approach
    • Maheswaran, R., and Khosa, R. (2012a). Multiscale nonlinear model for monthly stream flow forecasting: A wavelet-based approach. J. Hydroinf., 14(2), 424-442. http://dx.doi.org/10.2166/hydro.2011.130
    • (2012) J.Hydroinf , vol.14 , Issue.2 , pp. 424-442
    • Maheswaran, R.1    Khosa, R.2
  • 22
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran, R., and Khosa, R. (2012b). Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci., 46, 284-295. http://dx.doi.org/10.1016/j.cageo.2011.12.015
    • (2012) Comput. Geosci , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 24
    • 0003554146 scopus 로고    scopus 로고
    • Version 7, The Math works, Inc., Natick
    • MathWorks, Inc. (2010). MATLAB: User's Guide, Version 7, The Math works, Inc., Natick.
    • (2010) MATLAB: User's Guide
    • Mathworks, I.1
  • 25
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial information. Environ. Model
    • May, R.J., Maier, H.R., Dandy, G.C., and Gayani Fernando, T.M.K. (2008). Non-linear variable selection for artificial neural networks using partial information. Environ. Model. Software, 23(10-11), 1312-1326. http://dx.doi.org/10.1016/j.envsoft.2008.03.007
    • (2008) Software , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Gayani Fernando, T.4
  • 26
    • 65349086260 scopus 로고    scopus 로고
    • An entropy-based investigation into the variability of precipitation
    • Mishra, A.K., Ӧzger, M., and Singh, V.P. (2009). An entropy-based investigation into the variability of precipitation. J. Hydrol., 370(1-4), 139-154. http://dx.doi.org/10.1016/j.jhydrol.2009.03.006
    • (2009) J. Hydrol , vol.370 , Issue.1-4 , pp. 139-154
    • Mishra, A.K.1    Ӧzger, M.2    Singh, V.P.3
  • 27
    • 26944440613 scopus 로고    scopus 로고
    • Time Series Feature Extraction for Data Mining Using DWT and DFT, Technical Report
    • University of Marburg, Germany
    • Morchen, F. (2003). Time Series Feature Extraction for Data Mining Using DWT and DFT, Technical Report, Department of Mathematics and Computer Science, University of Marburg, Germany.
    • (2003) Department of Mathematics and Computer Science
    • Morchen, F.1
  • 28
    • 67649122251 scopus 로고    scopus 로고
    • Reply to comment on ‘Nourani V, Mogaddam AA, Nadiri AO. 2008. An ANN-based model for spatiotemporal groundwater level forecasting
    • Nourani, V. (2010). Reply to comment on ‘Nourani V, Mogaddam AA, Nadiri AO. 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes 22: 5054-5066’. Hydrol. Process., 24(3), 370-371. http://dx.doi.org/10.1002/hyp.7469
    • (2010) Hydrological Processes , vol.22 , pp. 5054-5066
    • Nourani, V.1
  • 29
    • 84891740048 scopus 로고    scopus 로고
    • Wavelet-based regularization of the extracted topographic index from high-resolution topography for hydro-geomorphic applications
    • Nourani, V., and Zanardo, S. (2014). Wavelet-based regularization of the extracted topographic index from high-resolution topography for hydro-geomorphic applications. Hydrol. Process., 28(3), 1345-1357. http://dx.doi.org/10.1002/hyp.9665
    • (2014) Hydrol. Process , vol.28 , Issue.3 , pp. 1345-1357
    • Nourani, V.1    Zanardo, S.2
  • 30
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani, V., Komasi, M., and Mano, A. (2009). A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage., 23(14), 2877-2894. http://dx.doi.org/10.1007/s11269-009-9414-5
    • (2009) Water Resour. Manage , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 31
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani, V., Kisi, O., and Komasi, M. (2011). Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol., 402(1-2), 41-59. http://dx.doi.org/10.1016/j.jhydrol.2011.03.002
    • (2011) J. Hydrol , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 32
    • 84859035270 scopus 로고    scopus 로고
    • Investigating the ability of Artificial Neural Network (ANN) models to estimate missing rain-gauge data
    • Nourani, V., Baghanam, A.H., and Gebremichael, M. (2012). Investigating the ability of Artificial Neural Network (ANN) models to estimate missing rain-gauge data. J. Environ. Inf., 19(1), 38-50. http://dx.doi.org/10.3808/jei.201200207
    • (2012) J. Environ. Inf , vol.19 , Issue.1 , pp. 38-50
    • Nourani, V.1    Baghanam, A.H.2    Gebremichael, M.3
  • 33
    • 84871025948 scopus 로고    scopus 로고
    • Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling
    • Nourani, V., Baghanam, A.H., Adamowski, J., and Gebremichael, M. (2013). Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J. Hydrol., 476, 228-243. http://dx.doi.org/10.1016/j.jhydrol.2012.10.054
    • (2013) J. Hydrol , vol.476 , pp. 228-243
    • Nourani, V.1    Baghanam, A.H.2    Adamowski, J.3    Gebremichael, M.4
  • 34
    • 79961076393 scopus 로고    scopus 로고
    • River suspended sediment load prediction: Application of ANN and wavelet conjunction model
    • Rajaee, T., Nourani, V., Zounemat-Kermani, M., and Kisi, O. (2011). River suspended sediment load prediction: Application of ANN and wavelet conjunction model. J. Hydrol. Eng., 16(8), 613-627. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000347
    • (2011) J. Hydrol. Eng , vol.16 , Issue.8 , pp. 613-627
    • Rajaee, T.1    Nourani, V.2    Zounemat-Kermani, M.3    Kisi, O.4
  • 35
    • 84859073639 scopus 로고    scopus 로고
    • Application of wavelet thresholding filter to improve multi-step ahead prediction model for hydraulic system
    • Safehian, J., Akbarzadeh, A., and Imani, B.M. (2012). Application of wavelet thresholding filter to improve multi-step ahead prediction model for hydraulic system. Adv. Mater. Res., 488-489, 1783-1787. http://dx.doi.org/10.4028/www.scientific.net/AMR.488-489.1783
    • (2012) Adv. Mater. Res , vol.488-489 , pp. 1783-1787
    • Safehian, J.1    Akbarzadeh, A.2    Imani, B.M.3
  • 36
    • 84871115737 scopus 로고    scopus 로고
    • A review on the applications of wavelet transform in hydrology time series analysis
    • Sang, Y.F. (2013). A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res., 122, 8-15. http://dx.doi.org/10.1016/j.atmosres.2012.11.003
    • (2013) Atmos. Res , vol.122 , pp. 8-15
    • Sang, Y.F.1
  • 37
    • 84940644968 scopus 로고
    • A mathematical theory of communications
    • Shannon, C.E. (1948). A mathematical theory of communications I and II. Bell Syst. Tech. J., 27(3), 379-443. http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
    • (1948) I and II. Bell Syst. Tech. J , vol.27 , Issue.3 , pp. 379-443
    • Shannon, C.E.1
  • 38
    • 84900000488 scopus 로고    scopus 로고
    • Comparative study of different wavelet based neural network models for rainfall-runoff modeling
    • Shoaib, M., Shamseldin, A.Y., and Melville, B.W. (2014). Comparative study of different wavelet based neural network models for rainfall-runoff modeling. J. Hydrol., 515, 47-58. http://dx.doi.org/10.1016/j.jhydrol.2014.04.055
    • (2014) J. Hydrol , vol.515 , pp. 47-58
    • Shoaib, M.1    Shamseldin, A.Y.2    Melville, B.W.3
  • 39
    • 0031141905 scopus 로고    scopus 로고
    • The use of entropy in hydrology and water resources. Hydrol
    • Singh, V.P. (1997). The use of entropy in hydrology and water resources. Hydrol. Process., 11(6), 587-626. http://dx.doi.org/10.100 2/(SICI)1099-1085(199705)11:6<587::AID-HYP479>3.0.CO;2-P
    • (1997) Process , vol.11 , Issue.6 , pp. 587-626
    • Singh, V.P.1
  • 40
    • 79955741624 scopus 로고    scopus 로고
    • Hydrologic synthesis using entropy theory
    • Singh, V.P. (2011). Hydrologic synthesis using entropy theory: Review. J. Hydrol. Eng., 16(5), 421-433. http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000332
    • (2011) Review. J. Hydrol. Eng , vol.16 , Issue.5 , pp. 421-433
    • Singh, V.P.1
  • 41
    • 84861211172 scopus 로고    scopus 로고
    • Wavelet-ANN model for flood events
    • Singh, R.M. (2012). Wavelet-ANN model for flood events. Adv. Intell. Soft Comput., 131, 165-175. http://dx.doi.org/10.1007/978-81-322-0491-6_16
    • (2012) Adv. Intell. Soft Comput , vol.131 , pp. 165-175
    • Singh, R.M.1
  • 42
    • 0002915083 scopus 로고    scopus 로고
    • Relevance of time-frequency features for phonetic and speakerchannel classification
    • Yang, H.H., Vuuren, S.V., Sharma, S., and Hermansky, H. (2000). Relevance of time-frequency features for phonetic and speakerchannel classification. Speech Commun., 31(1), 35-50. http://dx. doi.org/10.1016/S0167-6393(00)00007-8
    • (2000) Speech Commun , vol.31 , Issue.1 , pp. 35-50
    • Yang, H.H.1    Vuuren, S.V.2    Sharma, S.3    Hermansky, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.