메뉴 건너뛰기




Volumn 54, Issue 1, 2016, Pages 479-488

Reweighted Sparse Regression for Hyperspectral Unmixing

Author keywords

Hyperspectral unmixing (HSU); iterative reweighting; sparse regression

Indexed keywords

REGRESSION ANALYSIS; SPECTROSCOPY;

EID: 84947035634     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2015.2459763     Document Type: Article
Times cited : (71)

References (33)
  • 1
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr.
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 3, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.3 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 2
    • 84890430996 scopus 로고    scopus 로고
    • Collaborative sparse regression for hyperspectral unmixing
    • Jan.
    • M. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Collaborative sparse regression for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 1, pp. 341-354, Jan. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 341-354
    • Iordache, M.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 3
    • 84906510987 scopus 로고    scopus 로고
    • Hyperspectral image classification using functional data analysis
    • Sep.
    • H. Li, G. Xiao, T. Xia, Y. Y. Tang, and L. Li, "Hyperspectral image classification using functional data analysis," IEEE Trans. Cybern., vol. 44, no. 9, pp. 1544-1555, Sep. 2014.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.9 , pp. 1544-1555
    • Li, H.1    Xiao, G.2    Xia, T.3    Tang, Y.Y.4    Li, L.5
  • 4
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 5
    • 80455176882 scopus 로고    scopus 로고
    • Foreword to the special issue on spectral unmixing of remotely sensed data
    • Nov.
    • A. Plaza, Q. Du, J. Bioucas-Dias, X. Jia, and A. Kruse, "Foreword to the special issue on spectral unmixing of remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4103-4110, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4103-4110
    • Plaza, A.1    Du, Q.2    Bioucas-Dias, J.3    Jia, X.4    Kruse, A.5
  • 6
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data," in Proc. SPIE Conf. Imaging Spectrom., Pasadena, CA, USA, 1999, pp. 266-275.
    • (1999) Proc. SPIE Conf. Imaging Spectrom., Pasadena, CA, USA , pp. 266-275
    • Winter, M.E.1
  • 7
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr.
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 8
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. Bayliss, J. Gualtieri, and R. Cromp, "Analyzing hyperspectral data with independent component analysis," in Proc. SPIE, 1997, vol. 3240, pp. 133-143.
    • (1997) Proc. SPIE , vol.3240 , pp. 133-143
    • Bayliss, J.1    Gualtieri, J.2    Cromp, R.3
  • 9
    • 84877927996 scopus 로고    scopus 로고
    • An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
    • Apr.
    • N.Wang, B. Du, and L. Zhang, "An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 554-569, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 554-569
    • Wang, N.1    Du, B.2    Zhang, L.3
  • 10
    • 84896314517 scopus 로고    scopus 로고
    • Double constrained NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, and Y. Yuan, "Double constrained NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2746-2758, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2746-2758
    • Lu, X.1    Wu, H.2    Yuan, Y.3
  • 11
    • 79952957026 scopus 로고    scopus 로고
    • Blind spectral unmixing based on sparse nonnegative matrix factorization
    • Apr.
    • Z. Yang et al., "Blind spectral unmixing based on sparse nonnegative matrix factorization," IEEE Trans. Image Process., vol. 20, no. 4, pp. 1112-1125, Apr. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.4 , pp. 1112-1125
    • Yang, Z.1
  • 12
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
    • Nov.
    • Y. Qian, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Zhou, J.2    Robles-Kelly, A.3
  • 13
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar.
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 14
    • 78649271874 scopus 로고    scopus 로고
    • Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing
    • J. M. Bioucas-Dias and M. A. Figueiredo, "Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing," in Proc. IEEE 2nd WHISPERS, 2010, pp. 1-4.
    • (2010) Proc. IEEE 2nd WHISPERS , pp. 1-4
    • Bioucas-Dias, J.M.1    Figueiredo, M.A.2
  • 15
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 16
    • 84881635276 scopus 로고    scopus 로고
    • A novel l1/2 sparse regression method for hyperspectral unmixing
    • Jun.
    • L. Sun et al., "A novel l1/2 sparse regression method for hyperspectral unmixing," Int. J. Remote Sens., vol. 34, no. 20, pp. 6983-7001, Jun. 2013.
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.20 , pp. 6983-7001
    • Sun, L.1
  • 17
    • 84879930808 scopus 로고    scopus 로고
    • Sparse hyperspectral unmixing based on constrained Lp? L2 optimization
    • Sep.
    • C. Fen and Z. Yan, "Sparse hyperspectral unmixing based on constrained Lp ? L2 optimization," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 5, pp. 1142-1146, Sep. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.5 , pp. 1142-1146
    • Fen, C.1    Yan, Z.2
  • 18
    • 84896397988 scopus 로고    scopus 로고
    • Subspace matching pursuit for sparse unmixing of hyperspectral data
    • Jun.
    • Z. Shi, W. Tang, Z. Duren, and Z. Jiang, "Subspace matching pursuit for sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3256-3274, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3256-3274
    • Shi, Z.1    Tang, W.2    Duren, Z.3    Jiang, Z.4
  • 19
    • 84898602204 scopus 로고    scopus 로고
    • Regularized simultaneous forward-backward greedy algorithm for sparse unmixing of hyperspectral data
    • Sep.
    • W. Tang, Z. Shi, and Y.Wu, "Regularized simultaneous forward-backward greedy algorithm for sparse unmixing of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5271-5288, Sep. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.9 , pp. 5271-5288
    • Tang, W.1    Shi, Z.2    Wu, Y.3
  • 21
    • 34249837486 scopus 로고
    • On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators
    • Apr.
    • J. Eckstein and D. P. Bertsekas, "On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators," Math. Program., vol. 55, no. 1-3, pp. 293-318, Apr. 1992.
    • (1992) Math. Program. , vol.55 , Issue.1-3 , pp. 293-318
    • Eckstein, J.1    Bertsekas, D.P.2
  • 22
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Jan.
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Found. Trends Mach. Learn, vol. 3, no. 1, pp. 1-122, Jan. 2011.
    • (2011) Found. Trends Mach. Learn , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 23
    • 79951838072 scopus 로고    scopus 로고
    • An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
    • Mar.
    • M. Afonso, J. Bioucas-Dias, and M. Figueiredo, "An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems," IEEE Trans. Image Process., vol. 20, no. 3, pp. 681-695, Mar. 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.3 , pp. 681-695
    • Afonso, M.1    Bioucas-Dias, J.2    Figueiredo, M.3
  • 24
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted l1 minimization
    • Dec.
    • E. J. Candes, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted l1 minimization," J. Fourier Anal. Appl., vol. 14, no. 5/6, pp. 877-905, Dec. 2008.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5-6 , pp. 877-905
    • Candes, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 25
    • 84896748598 scopus 로고    scopus 로고
    • Small infrared target detection based on harmonic and sparse matrix decomposition
    • Jun.
    • C. Zheng and H. Li, "Small infrared target detection based on harmonic and sparse matrix decomposition," Opt. Eng., vol. 52, no. 6, Jun. 2013, Art. ID. 066401.
    • (2013) Opt. Eng. , vol.52 , Issue.6
    • Zheng, C.1    Li, H.2
  • 26
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar.
    • D. Heinz and C. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.1    Chang, C.2
  • 27
    • 84876110057 scopus 로고    scopus 로고
    • Error analysis for matrix elastic-net regularization algorithms
    • May
    • H. Li, N. Chen, and L. Li, "Error analysis for matrix elastic-net regularization algorithms," IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 5, pp. 737-748, May 2012.
    • (2012) IEEE Trans. Neural Netw. Learning Syst. , vol.23 , Issue.5 , pp. 737-748
    • Li, H.1    Chen, N.2    Li, L.3
  • 28
    • 67650178787 scopus 로고    scopus 로고
    • Sparse reconstruction by separable approximation
    • Jul.
    • S. Wright, R. Nowak, and M. Figueiredo, "Sparse reconstruction by separable approximation," IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2479-2493, Jul. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.7 , pp. 2479-2493
    • Wright, S.1    Nowak, R.2    Figueiredo, M.3
  • 29
    • 70049113231 scopus 로고    scopus 로고
    • Sparse regression using mixed norms
    • Nov.
    • M. Kowalski, "Sparse regression using mixed norms," Appl. Comput. Harmonic Anal., vol. 27, no. 3, pp. 303-324, Nov. 2009.
    • (2009) Appl. Comput. Harmonic Anal. , vol.27 , Issue.3 , pp. 303-324
    • Kowalski, M.1
  • 30
    • 84873904601 scopus 로고    scopus 로고
    • Decentralized jointly sparse optimization by reweighted minimization
    • Mar.
    • Q. Ling, Z. Wen, and W. Yin, "Decentralized jointly sparse optimization by reweighted minimization," IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1165-1170, Mar. 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.5 , pp. 1165-1170
    • Ling, Q.1    Wen, Z.2    Yin, W.3
  • 33
    • 84861398963 scopus 로고    scopus 로고
    • On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method
    • Apr.
    • B. He and X. Yuan, "On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method," SIAM J. Numer. Anal., vol. 50, no. 2, pp. 700-709, Apr. 2012.
    • (2012) SIAM J. Numer. Anal. , vol.50 , Issue.2 , pp. 700-709
    • He, B.1    Yuan, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.