메뉴 건너뛰기




Volumn 6, Issue 2, 2013, Pages 554-569

An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing

Author keywords

Hyperspectral imagery; linear mixture model; non negative matrix factorization; spectral unmixing

Indexed keywords

ENDMEMBERS; HYPER-SPECTRAL IMAGERIES; HYPERSPECTRAL UNMIXING; LINEAR MIXTURE MODELS; NONCONVEX PROBLEM; NONNEGATIVE MATRIX FACTORIZATION; SPECTRAL UNMIXING; UNMIXING;

EID: 84877927996     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2013.2242255     Document Type: Article
Times cited : (133)

References (40)
  • 2
    • 84863976875 scopus 로고    scopus 로고
    • A discriminative manifold learning based dimension reduction method for hyperspectral classification
    • Jun
    • B. Du, L. Zhang, L. F. Zhang, T. Chen, and K. Wu, "A discriminative manifold learning based dimension reduction method for hyperspectral classification," Int. J. Fuzzy Syst. , vol. 14, no. 2, pp. 272-277, Jun. 2012.
    • (2012) Int. J. Fuzzy Syst , vol.14 , Issue.2 , pp. 272-277
    • Du, B.1    Zhang, L.2    Zhang, L.F.3    Chen, T.4    Wu, K.5
  • 3
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag. , vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 4
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • Jul
    • J. Li and J. M. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IGARSS, Boston, MA, Jul. 2008, vol. 3, pp. 250-253.
    • (2008) Proc. IGARSS, Boston, MA , vol.3 , pp. 250-253
    • Li, J.1    Bioucas-Dias, J.M.2
  • 6
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Conf. Imaging Spectrometry V, 1999, vol. 3753, pp. 266-275.
    • (1999) Proc. SPIE Conf. Imaging Spectrometry V , vol.3753 , pp. 266-275
    • Winter, M.E.1
  • 7
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct
    • C. -I Chang, C. -C. Wu, W. Liu, and Y. -C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens. , vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.3    Ouyang, Y.-C.4
  • 8
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • JPL Pub. 93-26
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. AVIRIS Workshop, 1993, vol. 1, pp. 11-14, JPL Pub. 93-26.
    • (1993) Proc. AVIRIS Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 9
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens. , vol. 43, no. 4, pp. 898-910, Apr. 2002. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 10
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • DOI 10.1109/TGRS.2002.802494
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens. , vol. 40, no. 9, pp. 2025-2041, Sep. 2002. (Pubitemid 35458399)
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 13
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," Adv. Neural Inf. Process. Syst. , vol. 13, pp. 556-562, 2000.
    • (2000) Adv. Neural Inf. Process. Syst , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 16
    • 79952957026 scopus 로고    scopus 로고
    • Blind spectral unmixing based on sparse nonnegative matrix factorization
    • Apr
    • G. X. Zhou, S. L. Xie, S. X. Ding, J. M. Yang, and J. Zhang, "Blind spectral unmixing based on sparse nonnegative matrix factorization," IEEE Trans. Image Process. , vol. 20, pp. 1112-1125, Apr. 2011.
    • (2011) IEEE Trans. Image Process , vol.20 , pp. 1112-1125
    • Zhou, G.X.1    Xie, S.L.2    Ding, S.X.3    Yang, J.M.4    Zhang, J.5
  • 17
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • A. Huck, M. Guillaume, and J. Blanc-Talon, "Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens. , vol. 48, pp. 2590-2602, 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 18
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data usingminimumvolume constrained nonnegativematrix factorization," IEEE Trans. Geosci. Remote Sens. , vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 19
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. T. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens. , vol. 47, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 161-173
    • Jia, S.1    Qian, Y.T.2
  • 20
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb
    • X. S. Liu, W. Xia, B. Wang, and L. M. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens. , vol. 49, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 757-772
    • Liu, X.S.1    Xia, W.2    Wang, B.3    Zhang, L.M.4
  • 21
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • May
    • M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens. , vol. 32, no. 3, pp. 542-552, May 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.D.1
  • 22
    • 80455174042 scopus 로고    scopus 로고
    • A simplex volume maximization framework for hyperspectral endmember extraction
    • T. H. Chan, W. K. Ma, A. Ambikapathi, and C. Y. Chi, "A simplex volume maximization framework for hyperspectral endmember extraction," IEEE Trans. Geosci. Remote Sens. , vol. 49, pp. 4177-4193, 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 4177-4193
    • Chan, T.H.1    Ma, W.K.2    Ambikapathi, A.3    Chi, C.Y.4
  • 23
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T. H. Chan, C. Y. Chi, Y. M. Huang, and W. K. Ma, "A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process. , vol. 57, pp. 4418-4432, 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , pp. 4418-4432
    • Chan, T.H.1    Chi, C.Y.2    Huang, Y.M.3    Ma, W.K.4
  • 24
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error
    • P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error," Environmetrics, vol. 5, pp. 111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 25
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • Oct
    • C. J. Lin, "Projected gradient methods for non-negative matrix factorization," Neural Comput. , vol. 19, no. 10, pp. 2756-2779, Oct. 2007.
    • (2007) Neural Comput , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.J.1
  • 26
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res. , vol. 5, pp. 1457-1469, 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 28
    • 79959532395 scopus 로고    scopus 로고
    • Graph regularized nonnegative matrix factorization for data representation
    • C. Deng et al. , "Graph regularized nonnegative matrix factorization for data representation," IEEE Trans. Pattern Anal. Mach. Intell. , vol. 33, pp. 1548-1560, 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , pp. 1548-1560
    • Deng, C.1
  • 29
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • Jul
    • N. Y. Guan et al. , "Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent," IEEE Trans. Image Process. , vol. 20, pp. 2030-2048, Jul. 2011.
    • (2011) IEEE Trans. Image Process , vol.20 , pp. 2030-2048
    • Guan, N.Y.1
  • 30
    • 33750820859 scopus 로고    scopus 로고
    • Impact of initialization on design of endmember extraction algorithms
    • DOI 10.1109/TGRS.2006.879538, 1717734
    • A. Plaza and C. -I Chang, "Impact of initialization on design of endmember extraction algorithms," IEEE Trans. Geosci. Remote Sens. , vol. 44, no. 11, pp. 3397-3407, Nov. 2006. (Pubitemid 44711681)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3397-3407
    • Plaza, A.1    Chang, C.-I.2
  • 31
    • 33847703873 scopus 로고    scopus 로고
    • Unsupervised classification of remote sensing imagery with non-negative matrix factorization
    • C. -Y. Liou and K. O. Yang, "Unsupervised classification of remote sensing imagery with non-negative matrix factorization," in Proc. ICONIP, 2005, pp. 280-285.
    • Proc. ICONIP, 2005 , pp. 280-285
    • Liou, C.-Y.1    Yang, K.O.2
  • 32
    • 12344317125 scopus 로고    scopus 로고
    • Improving non-negative matrix factorizations through structured initialization
    • DOI 10.1016/j.patcog.2004.02.013, PII S0031320304000937
    • S. Wild, J. Curry, and A. Dougherty, "Improving non-negative matrix factorization through structured initialization," Pattern Recognit. , vol. 37, no. 11, pp. 2217-2232, Nov. 2004. (Pubitemid 40134553)
    • (2004) Pattern Recognition , vol.37 , Issue.11 , pp. 2217-2232
    • Wild, S.1    Curry, J.2    Dougherty, A.3
  • 33
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start for nonnegative matrix factorization
    • DOI 10.1016/j.patcog.2007.09.010, PII S0031320307004359
    • C. Boutsidis and E. Gallopoulos, "SVD based initialization: A head start for nonnegative matrix factorization," Pattern Recognit. , vol. 41, no. 4, pp. 1350-1362, Apr. 2008. (Pubitemid 350212975)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 34
    • 0033309449 scopus 로고    scopus 로고
    • Spectral information divergence for hyperspectral image analysis
    • I. C. Chein, "Spectral information divergence for hyperspectral image analysis," in Proc. IGARSS '99, IEEE 1999 Int. , vol. 1, pp. 509-511.
    • Proc. IGARSS '99, IEEE 1999 Int , vol.1 , pp. 509-511
    • Chein, I.C.1
  • 35
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens. , vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 37
    • 40049102691 scopus 로고    scopus 로고
    • Evolution in imaging spectroscopy analysis and sensor signal-to-noise:An examination of how farwe have come
    • Mar
    • R. N. Clark and G. A. Swayze, "Evolution in imaging spectroscopy analysis and sensor signal-to-noise:An examination of how farwe have come," in Proc. 6th Annu. JPL Airborne Earth Sci. Workshop, Mar. 1996, pp. 49-53.
    • (1996) Proc. 6th Annu. JPL Airborne Earth Sci. Workshop , pp. 49-53
    • Clark, R.N.1    Swayze, G.A.2
  • 38
    • 65049088007 scopus 로고    scopus 로고
    • Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery
    • Apr
    • X. Tao, B. Wang, and L. Zhang, "Orthogonal bases approach for decomposition of mixed pixels for hyperspectral imagery," IEEE Geosci. Remote Sens. Lett. , vol. 6, no. 2, pp. 219-223, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , Issue.2 , pp. 219-223
    • Tao, X.1    Wang, B.2    Zhang, L.3
  • 39
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and I. C. Chein, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens. , vol. 39, pp. 529-545, 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 40
    • 79955590723 scopus 로고    scopus 로고
    • Random selection based anomaly detector for hyperspectral imagery
    • May
    • B. Du and L. Zhang, "Random selection based anomaly detector for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1578-1589, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.5 , pp. 1578-1589
    • Du, B.1    Zhang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.