메뉴 건너뛰기




Volumn 48, Issue 6, 2010, Pages 2590-2602

Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data

Author keywords

Blind source separation; Hyperspectral unmixing; Nonnegative matrix factorization; Projected gradient; Regularization function

Indexed keywords

APRIORI; COMPARATIVE ANALYSIS; DEGENERATED SOLUTIONS; ENDMEMBERS; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGE ANALYSIS; HYPERSPECTRAL UNMIXING; LINEAR MIXTURES; MINIMUM VARIANCE; MIXING COEFFICIENT; NONCONVEXITY; NONNEGATIVE MATRIX FACTORIZATION; PHYSICAL CONSTRAINTS; PROJECTED GRADIENT; PURE MATERIALS; REAL-WORLD; REGULARIZATION FUNCTION; SIZE ESTIMATION; SPECTRAL SINGULARITIES; SPECTRAL UNMIXING; UNMIXING;

EID: 77952582975     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2009.2038483     Document Type: Article
Times cited : (133)

References (43)
  • 1
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Jan
    • J. M. P. Nascimento and J. M. B. Dias, "Does independent component analysis play a role in unmixing hyperspectral data?" IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 2
    • 0000186045 scopus 로고
    • Mars-large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance
    • N. W. Hinners, Ed.
    • R. B. Singer and T. B. McCord, "Mars-Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance, " in Proc. Lunar Planetary Sci. Conf., N. W. Hinners, Ed., 1979, vol. 10, pp. 1835-1848.
    • (1979) Proc. Lunar Planetary Sci. Conf. , vol.10 , pp. 1835-1848
    • Singer, R.B.1    McCord, T.B.2
  • 4
    • 33645278665 scopus 로고    scopus 로고
    • Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods
    • Apr
    • S. Moussaoui, C. Carteret, D. Brie, and A. Djafari, "Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods, " Chemometr. Intell. Lab. Syst., vol. 81, no. 2, pp. 137-148, Apr. 2006.
    • (2006) Chemometr. Intell. Lab. Syst. , vol.81 , Issue.2 , pp. 137-148
    • Moussaoui, S.1    Carteret, C.2    Brie, D.3    Djafari, A.4
  • 5
    • 58149483476 scopus 로고    scopus 로고
    • Spectral unmixing with negative and superunity abundances for subpixel anomaly detection
    • Jan
    • O. Duran and M. Petrou, "Spectral unmixing with negative and superunity abundances for subpixel anomaly detection, " IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 152-156, Jan. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 152-156
    • Duran, O.1    Petrou, M.2
  • 6
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 7
    • 31344465213 scopus 로고    scopus 로고
    • Weighted abundance-constrained linear spectral mixture analysis
    • Feb
    • C.-I Chang and B. Ji, "Weighted abundance-constrained linear spectral mixture analysis, " IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 378-388, Feb. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.2 , pp. 378-388
    • C.-I Chang1    Ji, B.2
  • 8
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, "Fast autonomous spectral end-member determination in hyperspectral data, " in Proc. 13th Int. Conf. Appl. Geologic Remote Sens., 1999, vol. 2, pp. 337-344.
    • (1999) Proc. 13th Int. Conf. Appl. Geologic Remote Sens. , vol.2 , pp. 337-344
    • Winter, M.E.1
  • 9
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 11
    • 61349196839 scopus 로고    scopus 로고
    • Support vector machine-based endmember extraction
    • Mar
    • A. Filippi and R. Archibald, "Support vector machine-based endmember extraction, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 771-791, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 771-791
    • Filippi, A.1    Archibald, R.2
  • 12
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar
    • D. C. Heinz and C. I Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.I.2
  • 14
    • 34547519726 scopus 로고    scopus 로고
    • Spectral unmixing of hyperspectral images using a hierarchical Bayesian model
    • Apr. 15-20
    • N. Dobigeon and J.-Y. Tourneret, "Spectral unmixing of hyperspectral images using a hierarchical Bayesian model, " in Proc. IEEE ICASSP, Apr. 15-20, 2007, vol. 3, pp. III-1209-III-1212.
    • (2007) Proc. IEEE ICASSP , vol.3
    • Dobigeon, N.1    Tourneret, J.-Y.2
  • 15
    • 82355182723 scopus 로고    scopus 로고
    • Hyperspectral unmixing algorithm via dependent component analysis
    • Jul
    • J. Nascimento and J. Bioucas-Dias, "Hyperspectral unmixing algorithm via dependent component analysis, " in Proc. IEEE IGARSS, Jul. 2007, pp. 4033-4036.
    • (2007) Proc. IEEE IGARSS , pp. 4033-4036
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 16
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 18
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. M. Selander, Ed., Mar
    • J. Bayliss, J. A. Gualtieri, and R. F. Cromp, "Analyzing hyperspectral data with independent component analysis, " in Proc. SPIE, J. M. Selander, Ed., Mar. 1998, vol. 3240, pp. 133-143.
    • (1998) Proc. SPIE , vol.3240 , pp. 133-143
    • Bayliss, J.1    Gualtieri, J.A.2    Cromp, R.F.3
  • 19
    • 0038460232 scopus 로고    scopus 로고
    • Algorithms for nonnegative independent component analysis
    • May
    • M. D. Plumbley, "Algorithms for nonnegative independent component analysis, " IEEE Trans. Neural Netw., vol. 14, no. 3, pp. 534-543, May 2003.
    • (2003) IEEE Trans. Neural Netw. , vol.14 , Issue.3 , pp. 534-543
    • Plumbley, M.D.1
  • 21
  • 22
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • Jul
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis, " Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006.
    • (2006) Linear Algebra Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 23
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • Sep
    • M. W. Berry, M. Browne, A. N. Langville, P. V. Pauca, and R. J. Plemmons, "Algorithms and applications for approximate nonnegative matrix factorization, " Comput. Stat. Data Anal., vol. 52, no. 1, pp. 155-173, Sep. 2007.
    • (2007) Comput. Stat. Data Anal. , vol.52 , Issue.1 , pp. 155-173
    • Berry, M.W.1    Browne, M.2    Langville, A.N.3    Pauca, P.V.4    Plemmons, R.J.5
  • 25
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints, " J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 26
    • 34247173538 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with constrained second-order optimization
    • Aug
    • R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with constrained second-order optimization, " Signal Process., vol. 87, no. 8, pp. 1904-1916, Aug. 2007.
    • (2007) Signal Process. , vol.87 , Issue.8 , pp. 1904-1916
    • Zdunek, R.1    Cichocki, A.2
  • 27
    • 38049150410 scopus 로고    scopus 로고
    • Regularized alternating least squares algorithms for non-negative matrix/tensor factorizations
    • Lecture Notes in Computer Science, Nanjing, China
    • A. Cichocki and R. Zdunek, "Regularized alternating least squares algorithms for non-negative matrix/tensor factorizations, " in Proc. ISNN: Adv. Neural Netw., vol. 4493, Lecture Notes in Computer Science, Nanjing, China, 2007.
    • (2007) Proc. ISNN: Adv. Neural Netw. , vol.4493
    • Cichocki, A.1    Zdunek, R.2
  • 28
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 29
    • 38349054314 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization using projected gradient approaches
    • Dec
    • A. Cichocki and R. Zdunek, "Multilayer nonnegative matrix factorization using projected gradient approaches, " Int. J. Neural Syst., vol. 17, no. 6, pp. 431-446, Dec. 2007.
    • (2007) Int. J. Neural Syst. , vol.17 , Issue.6 , pp. 431-446
    • Cichocki, A.1    Zdunek, R.2
  • 31
    • 58149520173 scopus 로고    scopus 로고
    • Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
    • Jan
    • S. Robila and L. Maciak, "Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing, " IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 57-61
    • Robila, S.1    Maciak, L.2
  • 33
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for non-negative matrix factorization
    • Oct, Tech. Rep
    • C. J. Lin, "Projected gradient methods for non-negative matrix factorization, " Neural Comput., vol. 19, no. 10, pp. 2756-2779, Oct. 2007, Tech. Rep.
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.J.1
  • 34
    • 77952585985 scopus 로고    scopus 로고
    • Non-negative matrix factorization based on projected nonlinear conjugate gradient algorithm
    • Liverpool, U. K., Sep. 25-26
    • W. Wang and X. Zou, "Non-negative matrix factorization based on projected nonlinear conjugate gradient algorithm, " in Proc. ICARN, Liverpool, U. K., Sep. 25-26, 2008, pp. 5-8.
    • (2008) Proc. ICARN , pp. 5-8
    • Wang, W.1    Zou, X.2
  • 35
  • 36
    • 67651166641 scopus 로고    scopus 로고
    • Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures
    • Jul
    • J. Chen, X. Jia, W. Yang, and B. Matsushita, "Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures, " IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2165-2171, Jul. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.7 , pp. 2165-2171
    • Chen, J.1    Jia, X.2    Yang, W.3    Matsushita, B.4
  • 37
    • 0033890553 scopus 로고    scopus 로고
    • Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis
    • Mar
    • C. Bateson, G. Asner, and C. Wessman, "Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis, " IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 1083-1094, Mar. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.2 , pp. 1083-1094
    • Bateson, C.1    Asner, G.2    Wessman, C.3
  • 38
    • 66549112178 scopus 로고    scopus 로고
    • Effects of endmember dimensionality on subpixel detection performance
    • Jul
    • J. Broadwater, "Effects of endmember dimensionality on subpixel detection performance, " in Proc. IEEE IGARSS, Jul. 2008, vol. 2, pp. II-613-II-616.
    • (2008) Proc. IEEE IGARSS , vol.2
    • Broadwater, J.1
  • 39
    • 0033719885 scopus 로고    scopus 로고
    • Constrained subpixel target detection for remotely sensed imagery
    • May
    • C.-I Chang and D. Heinz, "Constrained subpixel target detection for remotely sensed imagery, " IEEE Trans. Geosci. Remote Sens., vol. 38, no. 3, p. 1144, May 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.3 , pp. 1144
    • C.-I Chang1    Heinz, D.2
  • 40
    • 77952582700 scopus 로고    scopus 로고
    • Online. Available
    • [Online]. Available: http://speclab.cr.usgs.gov/spectral-lib.html
  • 41
    • 77952580847 scopus 로고    scopus 로고
    • Online. Available
    • [Online]. Available: http://aviris.jpl.nasa.gov/
  • 42
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C. I Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, p. 608, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608
    • Chang, C.I.1    Du, Q.2
  • 43
    • 77952582517 scopus 로고    scopus 로고
    • Online. Available
    • [Online]. Available: http://speclab.cr.usgs.gov/PAPERS/cuprite.gr.truth. 1992/swayze.1992.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.