-
1
-
-
84887130699
-
Erythrocytosis: The HIF pathway in control
-
Franke K, Gassmann M, Wielockx B. Erythrocytosis: the HIF pathway in control. Blood. 2013;122(7):1122-1128.
-
(2013)
Blood
, vol.122
, Issue.7
, pp. 1122-1128
-
-
Franke, K.1
Gassmann, M.2
Wielockx, B.3
-
2
-
-
84933183002
-
Anaemia in kidney disease: Harnessing hypoxia responses for therapy
-
Koury MJ, Haase VH. Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol. 2015;11(7):394-410.
-
(2015)
Nat Rev Nephrol
, vol.11
, Issue.7
, pp. 394-410
-
-
Koury, M.J.1
Haase, V.H.2
-
3
-
-
46749127450
-
Repression via the GATA box is essential for tissue-specific erythropoietin gene expression
-
Obara N, Suzuki N, Kim K, Nagasawa T, Imagawa S, Yamamoto M. Repression via the GATA box is essential for tissue-specific erythropoietin gene expression. Blood. 2008;111(10):5223-5232.
-
(2008)
Blood
, vol.111
, Issue.10
, pp. 5223-5232
-
-
Obara, N.1
Suzuki, N.2
Kim, K.3
Nagasawa, T.4
Imagawa, S.5
Yamamoto, M.6
-
4
-
-
84988468588
-
Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin
-
Kobayashi H, Liu Q, Binns TC, et al. Distinct subpopulations of FOXD1 stroma-derived cells regulate renal erythropoietin. J Clin Invest. 2016;126(5):1926-1938.
-
(2016)
J Clin Invest
, vol.126
, Issue.5
, pp. 1926-1938
-
-
Kobayashi, H.1
Liu, Q.2
Binns, T.C.3
-
5
-
-
80053394522
-
Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice
-
Asada N, Takase M, Nakamura J, et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J Clin Invest. 2011;121(10):3981-3990.
-
(2011)
J Clin Invest
, vol.121
, Issue.10
, pp. 3981-3990
-
-
Asada, N.1
Takase, M.2
Nakamura, J.3
-
6
-
-
0029976021
-
Erythropoietin gene expression in human, monkey and murine brain
-
Marti HH, Wenger RH, Rivas LA, et al. Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci. 1996;8(4):666-676.
-
(1996)
Eur J Neurosci
, vol.8
, Issue.4
, pp. 666-676
-
-
Marti, H.H.1
Wenger, R.H.2
Rivas, L.A.3
-
7
-
-
33846963814
-
Erythropoietin after a century of research: Younger than ever
-
Jelkmann W. Erythropoietin after a century of research: younger than ever. Eur J Haematol. 2007;78(3):183-205.
-
(2007)
Eur J Haematol
, vol.78
, Issue.3
, pp. 183-205
-
-
Jelkmann, W.1
-
8
-
-
77954837178
-
Reactivation of hepatic EPO synthesis in mice after PHD loss
-
Minamishima YA, Kaelin WG Jr. Reactivation of hepatic EPO synthesis in mice after PHD loss. Science. 2010;329(5990):407.
-
(2010)
Science
, vol.329
, Issue.5990
, pp. 407
-
-
Minamishima, Y.A.1
Kaelin, W.G.2
-
9
-
-
84872134149
-
Regulation of erythropoiesis by hypoxia-inducible factors
-
Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013;27(1):41-53.
-
(2013)
Blood Rev
, vol.27
, Issue.1
, pp. 41-53
-
-
Haase, V.H.1
-
10
-
-
84936082587
-
Hypoxia signaling cascade for erythropoietin production in hepatocytes
-
Tojo Y, Sekine H, Hirano I, et al. Hypoxia signaling cascade for erythropoietin production in hepatocytes. Mol Cell Biol. 2015;35(15):2658-2672.
-
(2015)
Mol Cell Biol
, vol.35
, Issue.15
, pp. 2658-2672
-
-
Tojo, Y.1
Sekine, H.2
Hirano, I.3
-
11
-
-
0033512017
-
A potential role for erythropoietin in focal permanent cerebral ischemia in mice
-
Bernaudin M, Marti HH, Roussel S, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab. 1999;19(6):643-651.
-
(1999)
J Cereb Blood Flow Metab
, vol.19
, Issue.6
, pp. 643-651
-
-
Bernaudin, M.1
Marti, H.H.2
Roussel, S.3
-
12
-
-
0034013854
-
Neurons and astrocytes express EPO mRNA: Oxygen-sensing mechanisms that involve the redox-state of the brain
-
Bernaudin M, Bellail A, Marti HH, et al. Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia. 2000;30(3):271-278.
-
(2000)
Glia
, vol.30
, Issue.3
, pp. 271-278
-
-
Bernaudin, M.1
Bellail, A.2
Marti, H.H.3
-
13
-
-
70449412497
-
The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice
-
Weidemann A, Kerdiles YM, Knaup KX, et al. The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice. J Clin Invest. 2009;119(11):3373-3383.
-
(2009)
J Clin Invest
, vol.119
, Issue.11
, pp. 3373-3383
-
-
Weidemann, A.1
Kerdiles, Y.M.2
Knaup, K.X.3
-
14
-
-
80055014830
-
Central nervous system pericytes in health and disease
-
Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011;14(11):1398-1405.
-
(2011)
Nat Neurosci
, vol.14
, Issue.11
, pp. 1398-1405
-
-
Winkler, E.A.1
Bell, R.D.2
Zlokovic, B.V.3
-
15
-
-
38849095193
-
NG2 cells generate both oligodendrocytes and gray matter astrocytes
-
Zhu X, Bergles DE, Nishiyama A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development. 2008;135(1):145-157.
-
(2008)
Development
, vol.135
, Issue.1
, pp. 145-157
-
-
Zhu, X.1
Bergles, D.E.2
Nishiyama, A.3
-
16
-
-
84937414504
-
Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes
-
Hill RA, Tong L, Yuan P, Murikinati S, Gupta S, Grutzendler J. Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron. 2015;87(1):95-110.
-
(2015)
Neuron
, vol.87
, Issue.1
, pp. 95-110
-
-
Hill, R.A.1
Tong, L.2
Yuan, P.3
Murikinati, S.4
Gupta, S.5
Grutzendler, J.6
-
17
-
-
84956522491
-
Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice
-
Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics. 2015;2(4):041402.
-
(2015)
Neurophotonics
, vol.2
, Issue.4
, pp. 041402
-
-
Hartmann, D.A.1
Underly, R.G.2
Grant, R.I.3
Watson, A.N.4
Lindner, V.5
Shih, A.Y.6
-
18
-
-
79961230399
-
Pericytes: Developmental, physiological, and pathological perspectives, problems, and promises
-
Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193-215.
-
(2011)
Dev Cell
, vol.21
, Issue.2
, pp. 193-215
-
-
Armulik, A.1
Genové, G.2
Betsholtz, C.3
-
19
-
-
84862496300
-
Sox10-iCreERT2 : A mouse line to inducibly trace the neural crest and oligodendrocyte lineage
-
Simon C, Lickert H, Götz M, Dimou L. Sox10-iCreERT2 : a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis. 2012;50(6):506-515.
-
(2012)
Genesis
, vol.50
, Issue.6
, pp. 506-515
-
-
Simon, C.1
Lickert, H.2
Götz, M.3
Dimou, L.4
-
20
-
-
0029964385
-
Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ
-
Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174(2):221-232.
-
(1996)
Dev Biol
, vol.174
, Issue.2
, pp. 221-232
-
-
Mikawa, T.1
Gourdie, R.G.2
-
21
-
-
29644432271
-
The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature
-
Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development. 2005;132(23):5317-5328.
-
(2005)
Development
, vol.132
, Issue.23
, pp. 5317-5328
-
-
Wilm, B.1
Ipenberg, A.2
Hastie, N.D.3
Burch, J.B.4
Bader, D.M.5
-
22
-
-
55949133275
-
Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development
-
Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL. Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci USA. 2008;105(43):16626-16630.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.43
, pp. 16626-16630
-
-
Que, J.1
Wilm, B.2
Hasegawa, H.3
Wang, F.4
Bader, D.5
Hogan, B.L.6
-
23
-
-
79952240154
-
Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver
-
Asahina K, Zhou B, Pu WT, Tsukamoto H. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology. 2011;53(3):983-995.
-
(2011)
Hepatology
, vol.53
, Issue.3
, pp. 983-995
-
-
Asahina, K.1
Zhou, B.2
Pu, W.T.3
Tsukamoto, H.4
-
24
-
-
0041440036
-
The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice
-
Scortegagna M, Morris MA, Oktay Y, Bennett M, Garcia JA. The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood. 2003;102(5):1634-1640.
-
(2003)
Blood
, vol.102
, Issue.5
, pp. 1634-1640
-
-
Scortegagna, M.1
Morris, M.A.2
Oktay, Y.3
Bennett, M.4
Garcia, J.A.5
-
25
-
-
34147124264
-
Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo
-
Rankin EB, Biju MP, Liu Q, et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest. 2007;117(4):1068-1077.
-
(2007)
J Clin Invest
, vol.117
, Issue.4
, pp. 1068-1077
-
-
Rankin, E.B.1
Biju, M.P.2
Liu, Q.3
-
26
-
-
77958177671
-
Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia
-
Kapitsinou PP, Liu Q, Unger TL, et al. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood. 2010;116(16):3039-3048.
-
(2010)
Blood
, vol.116
, Issue.16
, pp. 3039-3048
-
-
Kapitsinou, P.P.1
Liu, Q.2
Unger, T.L.3
-
27
-
-
43649093915
-
Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway
-
Kaelin WG Jr, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393-402.
-
(2008)
Mol Cell
, vol.30
, Issue.4
, pp. 393-402
-
-
Kaelin, W.G.1
Ratcliffe, P.J.2
-
28
-
-
31444444162
-
Integration of oxygen signaling at the consensus HRE
-
Wenger RH, Stiehl DP, Camenisch G. Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005;2005(306):re12.
-
(2005)
Sci STKE
, vol.2005
, Issue.306
, pp. re12
-
-
Wenger, R.H.1
Stiehl, D.P.2
Camenisch, G.3
-
30
-
-
17944375360
-
C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation
-
Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43-54.
-
(2001)
Cell
, vol.107
, Issue.1
, pp. 43-54
-
-
Epstein, A.C.1
Gleadle, J.M.2
McNeill, L.A.3
-
31
-
-
0035917808
-
Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation
-
Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468-472.
-
(2001)
Science
, vol.292
, Issue.5516
, pp. 468-472
-
-
Jaakkola, P.1
Mole, D.R.2
Tian, Y.M.3
-
32
-
-
0035917313
-
HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing
-
Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464-468.
-
(2001)
Science
, vol.292
, Issue.5516
, pp. 464-468
-
-
Ivan, M.1
Kondo, K.2
Yang, H.3
-
33
-
-
18444368709
-
Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL
-
Hon WC, Wilson MI, Harlos K, et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature. 2002;417(6892):975-978.
-
(2002)
Nature
, vol.417
, Issue.6892
, pp. 975-978
-
-
Hon, W.C.1
Wilson, M.I.2
Harlos, K.3
-
34
-
-
33750976389
-
Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2
-
Takeda K, Ho VC, Takeda H, Duan LJ, Nagy A, Fong GH. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol. 2006;26(22):8336-8346.
-
(2006)
Mol Cell Biol
, vol.26
, Issue.22
, pp. 8336-8346
-
-
Takeda, K.1
Ho, V.C.2
Takeda, H.3
Duan, L.J.4
Nagy, A.5
Fong, G.H.6
-
35
-
-
42449163874
-
Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure
-
Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG Jr. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood. 2008;111(6):3236-3244.
-
(2008)
Blood
, vol.111
, Issue.6
, pp. 3236-3244
-
-
Minamishima, Y.A.1
Moslehi, J.2
Bardeesy, N.3
Cullen, D.4
Bronson, R.T.5
Kaelin, W.G.6
-
36
-
-
84870566647
-
Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis
-
Liu Q, Davidoff O, Niss K, Haase VH. Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest. 2012;122(12):4635-4644.
-
(2012)
J Clin Invest
, vol.122
, Issue.12
, pp. 4635-4644
-
-
Liu, Q.1
Davidoff, O.2
Niss, K.3
Haase, V.H.4
-
37
-
-
84964612367
-
Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin
-
Farsijani NM, Liu Q, Kobayashi H, et al. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. J Clin Invest. 2016;126(4):1425-1437.
-
(2016)
J Clin Invest
, vol.126
, Issue.4
, pp. 1425-1437
-
-
Farsijani, N.M.1
Liu, Q.2
Kobayashi, H.3
-
38
-
-
0242552255
-
The NG2 proteoglycan: Past insights and future prospects
-
Stallcup WB. The NG2 proteoglycan: past insights and future prospects. J Neurocytol. 2002;31(6-7):423-435.
-
(2002)
J Neurocytol
, vol.31
, Issue.6-7
, pp. 423-435
-
-
Stallcup, W.B.1
-
39
-
-
0034796499
-
NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis
-
Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn. 2001;222(2):218-227.
-
(2001)
Dev Dyn
, vol.222
, Issue.2
, pp. 218-227
-
-
Ozerdem, U.1
Grako, K.A.2
Dahlin-Huppe, K.3
Monosov, E.4
Stallcup, W.B.5
-
40
-
-
57749172539
-
Polydendrocytes (NG2 cells): Multifunctional cells with lineage plasticity
-
Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci. 2009;10(1):9-22.
-
(2009)
Nat Rev Neurosci
, vol.10
, Issue.1
, pp. 9-22
-
-
Nishiyama, A.1
Komitova, M.2
Suzuki, R.3
Zhu, X.4
-
41
-
-
0026768685
-
Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia
-
Tan CC, Eckardt KU, Firth JD, Ratcliffe PJ. Feedback modulation of renal and hepatic erythropoietin mRNA in response to graded anemia and hypoxia. Am J Physiol. 1992;263(3 Pt 2):F474-F481.
-
(1992)
Am J Physiol
, vol.263
, Issue.3
, pp. F474-F481
-
-
Tan, C.C.1
Eckardt, K.U.2
Firth, J.D.3
Ratcliffe, P.J.4
-
42
-
-
84886947010
-
Arteriolar niches maintain haematopoietic stem cell quiescence
-
Kunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502(7473):637-643.
-
(2013)
Nature
, vol.502
, Issue.7473
, pp. 637-643
-
-
Kunisaki, Y.1
Bruns, I.2
Scheiermann, C.3
-
43
-
-
84905004150
-
NG2 cells (polydendrocytes) in brain physiology and repair
-
Nishiyama A, Suzuki R, Zhu X. NG2 cells (polydendrocytes) in brain physiology and repair. Front Neurosci. 2014;8:133.
-
(2014)
Front Neurosci
, vol.8
, pp. 133
-
-
Nishiyama, A.1
Suzuki, R.2
Zhu, X.3
-
44
-
-
77955780543
-
Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling
-
Winkler EA, Bell RD, Zlokovic BV. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol Neurodegener. 2010;5:32.
-
(2010)
Mol Neurodegener
, vol.5
, pp. 32
-
-
Winkler, E.A.1
Bell, R.D.2
Zlokovic, B.V.3
-
45
-
-
84897564199
-
Capillary pericytes regulate cerebral blood flow in health and disease
-
Hall CN, Reynell C, Gesslein B, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55-60.
-
(2014)
Nature
, vol.508
, Issue.7494
, pp. 55-60
-
-
Hall, C.N.1
Reynell, C.2
Gesslein, B.3
-
46
-
-
80052404569
-
Impaired hypoxic response in senescent mouse brain
-
Rabie T, Kunze R, Marti HH. Impaired hypoxic response in senescent mouse brain. Int J Dev Neurosci. 2011;29(6):655-661.
-
(2011)
Int J Dev Neurosci
, vol.29
, Issue.6
, pp. 655-661
-
-
Rabie, T.1
Kunze, R.2
Marti, H.H.3
-
47
-
-
40949090791
-
Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins
-
Takeda K, Aguila HL, Parikh NS, et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood. 2008;111(6):3229-3235.
-
(2008)
Blood
, vol.111
, Issue.6
, pp. 3229-3235
-
-
Takeda, K.1
Aguila, H.L.2
Parikh, N.S.3
-
48
-
-
84874351409
-
HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α-induced excessive erythropoiesis
-
Franke K, Kalucka J, Mamlouk S, et al. HIF-1α is a protective factor in conditional PHD2-deficient mice suffering from severe HIF-2α-induced excessive erythropoiesis. Blood. 2013;121(8):1436-1445.
-
(2013)
Blood
, vol.121
, Issue.8
, pp. 1436-1445
-
-
Franke, K.1
Kalucka, J.2
Mamlouk, S.3
-
49
-
-
4644318828
-
Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor
-
Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279(37):38458-38465.
-
(2004)
J Biol Chem
, vol.279
, Issue.37
, pp. 38458-38465
-
-
Appelhoff, R.J.1
Tian, Y.M.2
Raval, R.R.3
-
50
-
-
70350456693
-
A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo
-
Minamishima YA, Moslehi J, Padera RF, Bronson RT, Liao R, Kaelin WG Jr. A feedback loop involving the Phd3 prolyl hydroxylase tunes the mammalian hypoxic response in vivo. Mol Cell Biol. 2009;29(21):5729-5741.
-
(2009)
Mol Cell Biol
, vol.29
, Issue.21
, pp. 5729-5741
-
-
Minamishima, Y.A.1
Moslehi, J.2
Padera, R.F.3
Bronson, R.T.4
Liao, R.5
Kaelin, W.G.6
-
51
-
-
0034641710
-
Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury
-
Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA. 2000;97(19):10526-10531.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.19
, pp. 10526-10531
-
-
Brines, M.L.1
Ghezzi, P.2
Keenan, S.3
-
52
-
-
0842329753
-
Erythropoietin: A candidate compound for neuroprotection in schizophrenia
-
Ehrenreich H, Degner D, Meller J, et al. Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol Psychiatry. 2004;9(1):42-54.
-
(2004)
Mol Psychiatry
, vol.9
, Issue.1
, pp. 42-54
-
-
Ehrenreich, H.1
Degner, D.2
Meller, J.3
-
53
-
-
20044373442
-
Emerging biological roles for erythropoietin in the nervous system
-
Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci. 2005;6(6):484-494.
-
(2005)
Nat Rev Neurosci
, vol.6
, Issue.6
, pp. 484-494
-
-
Brines, M.1
Cerami, A.2
-
54
-
-
33748714735
-
The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes
-
Chavez JC, Baranova O, Lin J, Pichiule P. The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci. 2006;26(37):9471-9481.
-
(2006)
J Neurosci
, vol.26
, Issue.37
, pp. 9471-9481
-
-
Chavez, J.C.1
Baranova, O.2
Lin, J.3
Pichiule, P.4
-
55
-
-
78649487239
-
Pericytes are required for blood-brain barrier integrity during embryogenesis
-
Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature. 2010;468(7323):562-566.
-
(2010)
Nature
, vol.468
, Issue.7323
, pp. 562-566
-
-
Daneman, R.1
Zhou, L.2
Kebede, A.A.3
Barres, B.A.4
-
56
-
-
78649467527
-
Pericytes regulate the blood-brain barrier
-
Armulik A, Genové G,Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557-561.
-
(2010)
Nature
, vol.468
, Issue.7323
, pp. 557-561
-
-
Armulik, A.1
Genové, G.2
Mäe, M.3
-
57
-
-
84860895927
-
Brain and skin do not contribute to the systemic rise in erythropoietin during acute hypoxia in humans
-
Rasmussen P, Nordsborg N, Taudorf S, et al. Brain and skin do not contribute to the systemic rise in erythropoietin during acute hypoxia in humans. FASEB J. 2012;26(5):1831-1834.
-
(2012)
FASEB J
, vol.26
, Issue.5
, pp. 1831-1834
-
-
Rasmussen, P.1
Nordsborg, N.2
Taudorf, S.3
-
58
-
-
0034104737
-
Circumventricular organs: Definition and role in the regulation of endocrine and autonomic function
-
Ganong WF. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 2000;27(5-6):422-427.
-
(2000)
Clin Exp Pharmacol Physiol
, vol.27
, Issue.5-6
, pp. 422-427
-
-
Ganong, W.F.1
-
59
-
-
77950516409
-
Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement
-
Bauer AT, Bürgers HF, Rabie T, Marti HH. Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cereb Blood Flow Metab. 2010;30(4):837-848.
-
(2010)
J Cereb Blood Flow Metab
, vol.30
, Issue.4
, pp. 837-848
-
-
Bauer, A.T.1
Bürgers, H.F.2
Rabie, T.3
Marti, H.H.4
-
60
-
-
0036846795
-
Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain
-
Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002;125(Pt 11):2549-2557.
-
(2002)
Brain
, vol.125
, pp. 2549-2557
-
-
Schoch, H.J.1
Fischer, S.2
Marti, H.H.3
-
61
-
-
84970923265
-
Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling
-
Souma T, Nezu M, Nakano D, et al. Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling. J Am Soc Nephrol. 2016;27(2):428-438.
-
(2016)
J Am Soc Nephrol
, vol.27
, Issue.2
, pp. 428-438
-
-
Souma, T.1
Nezu, M.2
Nakano, D.3
-
62
-
-
40349088993
-
High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche
-
Pietras A, Gisselsson D, Ora I, et al. High levels of HIF-2alpha highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche. J Pathol. 2008;214(4):482-488.
-
(2008)
J Pathol
, vol.214
, Issue.4
, pp. 482-488
-
-
Pietras, A.1
Gisselsson, D.2
Ora, I.3
-
63
-
-
70349753257
-
HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells
-
Pietras A, Hansford LM, Johnsson AS, et al. HIF-2alpha maintains an undifferentiated state in neural crest-like human neuroblastoma tumor-initiating cells. Proc Natl Acad Sci USA. 2009;106(39):16805-16810.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, Issue.39
, pp. 16805-16810
-
-
Pietras, A.1
Hansford, L.M.2
Johnsson, A.S.3
-
64
-
-
31444436640
-
A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis
-
Percy MJ, Zhao Q, Flores A, et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci USA. 2006;103(3):654-659.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.3
, pp. 654-659
-
-
Percy, M.J.1
Zhao, Q.2
Flores, A.3
-
65
-
-
84855215431
-
Isolated erythrocytosis: Study of 67 patients and identification of three novel germ-line mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene
-
Albiero E, Ruggeri M, Fortuna S, et al. Isolated erythrocytosis: study of 67 patients and identification of three novel germ-line mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene. Haematologica. 2012;97(1):123-127.
-
(2012)
Haematologica
, vol.97
, Issue.1
, pp. 123-127
-
-
Albiero, E.1
Ruggeri, M.2
Fortuna, S.3
-
66
-
-
84922391897
-
A genetic mechanism for Tibetan high-altitude adaptation
-
Lorenzo FR, Huff C, Myllymäki M, et al. A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet. 2014;46(9):951-956.
-
(2014)
Nat Genet
, vol.46
, Issue.9
, pp. 951-956
-
-
Lorenzo, F.R.1
Huff, C.2
Myllymäki, M.3
-
67
-
-
84908111254
-
Human high-altitude adaptation: Forward genetics meets the HIF pathway
-
Bigham AW, Lee FS. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 2014;28(20):2189-2204.
-
(2014)
Genes Dev
, vol.28
, Issue.20
, pp. 2189-2204
-
-
Bigham, A.W.1
Lee, F.S.2
|