메뉴 건너뛰기




Volumn 37, Issue 6, 2017, Pages

ArfGAP domain-containing protein 2 (ADAP2) integrates upstream and downstream modules of RIG-I signaling and facilitates type I interferon production

Author keywords

Innate immunity; Interferons; RIG I

Indexed keywords

ARFGAP DOMAIN CONTAINING PROTEIN 2; I KAPPA B KINASE GAMMA; INTERFERON; INTERFERON REGULATORY FACTOR 3; PROTEIN; RETINOIC ACID INDUCIBLE PROTEIN I; TUMOR NECROSIS FACTOR RECEPTOR ASSOCIATED FACTOR 3; UNCLASSIFIED DRUG; ADAP2 PROTEIN, HUMAN; DDX58 PROTEIN, HUMAN; GUANOSINE TRIPHOSPHATASE ACTIVATING PROTEIN; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; PATTERN RECOGNITION RECEPTOR; PROTEIN BINDING; RECOMBINANT PROTEIN;

EID: 85014415224     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00537-16     Document Type: Article
Times cited : (11)

References (74)
  • 2
    • 84872149525 scopus 로고    scopus 로고
    • Emerging infectious diseases in 2012: 20 years after the Institute of Medicine report
    • Morens DM, Fauci AS. 2012. Emerging infectious diseases in 2012: 20 years after the Institute of Medicine report. mBio 3:e00494-12. https://doi.org/10.1128/mBio.00494-12.
    • (2012) MBio , vol.3
    • Morens, D.M.1    Fauci, A.S.2
  • 3
    • 77951877953 scopus 로고    scopus 로고
    • Identification and functions of patternrecognition receptors
    • Kumagai Y, Akira S. 2010. Identification and functions of patternrecognition receptors. J Allergy Clin Immunol 125:985-992. https://doi.org/10.1016/j.jaci.2010.01.058.
    • (2010) J Allergy Clin Immunol , vol.125 , pp. 985-992
    • Kumagai, Y.1    Akira, S.2
  • 4
    • 65649141586 scopus 로고    scopus 로고
    • Pathogen recognition in the innate immune response
    • Kumar H, Kawai T, Akira S. 2009. Pathogen recognition in the innate immune response. Biochem J 420:1-16. https://doi.org/10.1042/BJ20090272.
    • (2009) Biochem J , vol.420 , pp. 1-16
    • Kumar, H.1    Kawai, T.2    Akira, S.3
  • 5
    • 84908279593 scopus 로고    scopus 로고
    • Activation and regulation of pathogen sensor RIG-I
    • Patel JR, Garcia-Sastre A. 2014. Activation and regulation of pathogen sensor RIG-I. Cytokine Growth Factor Rev 25:513-523. https://doi.org/10.1016/j.cytogfr.2014.08.005.
    • (2014) Cytokine Growth Factor Rev , vol.25 , pp. 513-523
    • Patel, J.R.1    Garcia-Sastre, A.2
  • 6
    • 79959649316 scopus 로고    scopus 로고
    • RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity
    • Ramos HJ, Gale M, Jr. 2011. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 1:167-176. https://doi.org/10.1016/j.coviro.2011.04.004.
    • (2011) Curr Opin Virol , vol.1 , pp. 167-176
    • Ramos, H.J.1    Gale, M.2
  • 7
    • 32644456874 scopus 로고    scopus 로고
    • Antiviral innate immunity pathways
    • Seth RB, Sun L, Chen ZJ. 2006. Antiviral innate immunity pathways. Cell Res 16:141-147. https://doi.org/10.1038/sj.cr.7310019.
    • (2006) Cell Res , vol.16 , pp. 141-147
    • Seth, R.B.1    Sun, L.2    Chen, Z.J.3
  • 8
    • 84863115198 scopus 로고    scopus 로고
    • Intrinsic antiviral immunity
    • Yan N, Chen ZJ. 2012. Intrinsic antiviral immunity. Nat Immunol 13: 214-222. https://doi.org/10.1038/ni.2229.
    • (2012) Nat Immunol , vol.13 , pp. 214-222
    • Yan, N.1    Chen, Z.J.2
  • 9
    • 75749089555 scopus 로고    scopus 로고
    • Recognition of viral nucleic acids in innate immunity
    • Yoneyama M, Fujita T. 2010. Recognition of viral nucleic acids in innate immunity. Rev Med Virol 20:4-22. https://doi.org/10.1002/rmv.633.
    • (2010) Rev Med Virol , vol.20 , pp. 4-22
    • Yoneyama, M.1    Fujita, T.2
  • 11
    • 33646555810 scopus 로고    scopus 로고
    • Type 1 interferons and the virus-host relationship: a lesson in detente
    • Garcia-Sastre A, Biron CA. 2006. Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312:879-882. https://doi.org/10.1126/science.1125676.
    • (2006) Science , vol.312 , pp. 879-882
    • Garcia-Sastre, A.1    Biron, C.A.2
  • 12
    • 82955187705 scopus 로고    scopus 로고
    • Interferon-stimulated genes and their antiviral effector functions
    • Schoggins JW, Rice CM. 2011. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519-525. https://doi.org/10.1016/j.coviro.2011.10.008.
    • (2011) Curr Opin Virol , vol.1 , pp. 519-525
    • Schoggins, J.W.1    Rice, C.M.2
  • 13
    • 33748455338 scopus 로고    scopus 로고
    • Type I interferons in host defense
    • Stetson DB, Medzhitov R. 2006. Type I interferons in host defense. Immunity 25:373-381. https://doi.org/10.1016/j.immuni.2006.08.007.
    • (2006) Immunity , vol.25 , pp. 373-381
    • Stetson, D.B.1    Medzhitov, R.2
  • 15
    • 39149107423 scopus 로고    scopus 로고
    • MDA5/RIG-I and virus recognition
    • Takeuchi O, Akira S. 2008. MDA5/RIG-I and virus recognition. Curr Opin Immunol 20:17-22. https://doi.org/10.1016/j.coi.2008.01.002.
    • (2008) Curr Opin Immunol , vol.20 , pp. 17-22
    • Takeuchi, O.1    Akira, S.2
  • 18
    • 80052281413 scopus 로고    scopus 로고
    • Mitochondrialassociated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus
    • Horner SM, Liu HM, Park HS, Briley J, Gale M, Jr. 2011. Mitochondrialassociated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A 108:14590-14595. https://doi.org/10.1073/pnas.1110133108.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 14590-14595
    • Horner, S.M.1    Liu, H.M.2    Park, H.S.3    Briley, J.4    Gale, M.5
  • 20
    • 27144440476 scopus 로고    scopus 로고
    • Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
    • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167-1172. https://doi.org/10.1038/nature04193.
    • (2005) Nature , vol.437 , pp. 1167-1172
    • Meylan, E.1    Curran, J.2    Hofmann, K.3    Moradpour, D.4    Binder, M.5    Bartenschlager, R.6    Tschopp, J.7
  • 21
    • 24144461689 scopus 로고    scopus 로고
    • Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFkappaB and IRF 3
    • Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFkappaB and IRF 3. Cell 122:669-682. https://doi.org/10.1016/j.cell.2005.08.012.
    • (2005) Cell , vol.122 , pp. 669-682
    • Seth, R.B.1    Sun, L.2    Ea, C.K.3    Chen, Z.J.4
  • 22
    • 24944538819 scopus 로고    scopus 로고
    • VISA is an adapter protein required for virus-triggered IFN-beta signaling
    • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727-740. https://doi.org/10.1016/j.molcel.2005.08.014.
    • (2005) Mol Cell , vol.19 , pp. 727-740
    • Xu, L.G.1    Wang, Y.Y.2    Han, K.J.3    Li, L.Y.4    Zhai, Z.5    Shu, H.B.6
  • 23
    • 79961133270 scopus 로고    scopus 로고
    • MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
    • Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ. 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448-461. https://doi.org/10.1016/j.cell.2011.06.041.
    • (2011) Cell , vol.146 , pp. 448-461
    • Hou, F.1    Sun, L.2    Zheng, H.3    Skaug, B.4    Jiang, Q.X.5    Chen, Z.J.6
  • 26
    • 34548129605 scopus 로고    scopus 로고
    • Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response
    • Hiscott J. 2007. Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18:483-490. https://doi.org/10.1016/j.cytogfr.2007.06.002.
    • (2007) Cytokine Growth Factor Rev , vol.18 , pp. 483-490
    • Hiscott, J.1
  • 28
    • 0036710523 scopus 로고    scopus 로고
    • Multiple signaling pathways leading to the activation of interferon regulatory factor 3
    • Servant MJ, Grandvaux N, Hiscott J. 2002. Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 64:985-992. https://doi.org/10.1016/S0006-2952(02)01165-6.
    • (2002) Biochem Pharmacol , vol.64 , pp. 985-992
    • Servant, M.J.1    Grandvaux, N.2    Hiscott, J.3
  • 29
    • 0031893220 scopus 로고    scopus 로고
    • Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation
    • Lin R, Heylbroeck C, Pitha PM, Hiscott J. 1998. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18:2986-2996. https://doi.org/10.1128/MCB.18.5.2986.
    • (1998) Mol Cell Biol , vol.18 , pp. 2986-2996
    • Lin, R.1    Heylbroeck, C.2    Pitha, P.M.3    Hiscott, J.4
  • 30
    • 0032915860 scopus 로고    scopus 로고
    • Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains
    • Lin R, Mamane Y, Hiscott J. 1999. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol Cell Biol 19:2465-2474. https://doi.org/10.1128/MCB.19.4.2465.
    • (1999) Mol Cell Biol , vol.19 , pp. 2465-2474
    • Lin, R.1    Mamane, Y.2    Hiscott, J.3
  • 31
    • 34547930163 scopus 로고    scopus 로고
    • Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch
    • Panne D, McWhirter SM, Maniatis T, Harrison SC. 2007. Interferon regulatory factor 3 is regulated by a dual phosphorylation-dependent switch. J Biol Chem 282:22816-22822. https://doi.org/10.1074/jbc.M703019200.
    • (2007) J Biol Chem , vol.282 , pp. 22816-22822
    • Panne, D.1    McWhirter, S.M.2    Maniatis, T.3    Harrison, S.C.4
  • 32
    • 0033858399 scopus 로고    scopus 로고
    • Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300
    • Suhara W, Yoneyama M, Iwamura T, Yoshimura S, Tamura K, Namiki H, Aimoto S, Fujita T. 2000. Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300. J Biochem 128:301-307. https://doi.org/10.1093/oxfordjournals.jbchem.a022753.
    • (2000) J Biochem , vol.128 , pp. 301-307
    • Suhara, W.1    Yoneyama, M.2    Iwamura, T.3    Yoshimura, S.4    Tamura, K.5    Namiki, H.6    Aimoto, S.7    Fujita, T.8
  • 33
    • 77954714807 scopus 로고    scopus 로고
    • Ser386 phosphorylation of transcription factor IRF-3 induces dimerization and association with CBP/p300 without overall conformational change
    • Takahasi K, Horiuchi M, Fujii K, Nakamura S, Noda NN, Yoneyama M, Fujita T, Inagaki F. 2010. Ser386 phosphorylation of transcription factor IRF-3 induces dimerization and association with CBP/p300 without overall conformational change. Genes Cells 15:901-910. https://doi.org/10.1111/j.1365-2443.2010.01427.x.
    • (2010) Genes Cells , vol.15 , pp. 901-910
    • Takahasi, K.1    Horiuchi, M.2    Fujii, K.3    Nakamura, S.4    Noda, N.N.5    Yoneyama, M.6    Fujita, T.7    Inagaki, F.8
  • 34
    • 0032015647 scopus 로고    scopus 로고
    • Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo
    • Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. 1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1:507-518. https://doi.org/10.1016/S1097-2765(00)80051-9.
    • (1998) Mol Cell , vol.1 , pp. 507-518
    • Wathelet, M.G.1    Lin, C.H.2    Parekh, B.S.3    Ronco, L.V.4    Howley, P.M.5    Maniatis, T.6
  • 35
    • 84887990870 scopus 로고    scopus 로고
    • Mechanisms of MAVS regulation at the mitochondrial membrane
    • Jacobs JL, Coyne CB. 2013. Mechanisms of MAVS regulation at the mitochondrial membrane. J Mol Biol 425:5009-5019. https://doi.org/10.1016/j.jmb.2013.10.007.
    • (2013) J Mol Biol , vol.425 , pp. 5009-5019
    • Jacobs, J.L.1    Coyne, C.B.2
  • 36
    • 84882705934 scopus 로고    scopus 로고
    • MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades
    • Liu S, Chen J, Cai X, Wu J, Chen X, Wu YT, Sun L, Chen ZJ. 2013. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2:e00785. https://doi.org/10.7554/eLife.00785.
    • (2013) ELife , vol.2
    • Liu, S.1    Chen, J.2    Cai, X.3    Wu, J.4    Chen, X.5    Wu, Y.T.6    Sun, L.7    Chen, Z.J.8
  • 37
    • 53349178089 scopus 로고    scopus 로고
    • STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
    • Ishikawa H, Barber GN. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674-678. https://doi.org/10.1038/nature07317.
    • (2008) Nature , vol.455 , pp. 674-678
    • Ishikawa, H.1    Barber, G.N.2
  • 38
    • 84873711885 scopus 로고    scopus 로고
    • Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
    • Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786-791. https://doi.org/10.1126/science.1232458.
    • (2013) Science , vol.339 , pp. 786-791
    • Sun, L.1    Wu, J.2    Du, F.3    Chen, X.4    Chen, Z.J.5
  • 39
    • 53349168904 scopus 로고    scopus 로고
    • The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
    • Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, Lei C, He X, Zhang L, Tien P, Shu HB. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538-550. https://doi.org/10.1016/j.immuni.2008.09.003.
    • (2008) Immunity , vol.29 , pp. 538-550
    • Zhong, B.1    Yang, Y.2    Li, S.3    Wang, Y.Y.4    Li, Y.5    Diao, F.6    Lei, C.7    He, X.8    Zhang, L.9    Tien, P.10    Shu, H.B.11
  • 40
    • 80052675864 scopus 로고    scopus 로고
    • IFN-induced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1
    • Liu XY, Chen W, Wei B, Shan YF, Wang C. 2011. IFN-induced TPR protein IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J Immunol 187:2559-2568. https://doi.org/10.4049/jimmunol.1100963.
    • (2011) J Immunol , vol.187 , pp. 2559-2568
    • Liu, X.Y.1    Chen, W.2    Wei, B.3    Shan, Y.F.4    Wang, C.5
  • 42
    • 73549097331 scopus 로고    scopus 로고
    • The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation
    • Nakhaei P, Mesplede T, Solis M, Sun Q, Zhao T, Yang L, Chuang TH, Ware CF, Lin R, Hiscott J. 2009. The E3 ubiquitin ligase Triad3A negatively regulates the RIG-I/MAVS signaling pathway by targeting TRAF3 for degradation. PLoS Pathog 5:e1000650. https://doi.org/10.1371/journal.ppat.1000650.
    • (2009) PLoS Pathog , vol.5
    • Nakhaei, P.1    Mesplede, T.2    Solis, M.3    Sun, Q.4    Zhao, T.5    Yang, L.6    Chuang, T.H.7    Ware, C.F.8    Lin, R.9    Hiscott, J.10
  • 43
    • 78650189572 scopus 로고    scopus 로고
    • The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
    • Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. 2010. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8:496-509. https://doi.org/10.1016/j.chom.2010.11.008.
    • (2010) Cell Host Microbe , vol.8 , pp. 496-509
    • Oshiumi, H.1    Miyashita, M.2    Inoue, N.3    Okabe, M.4    Matsumoto, M.5    Seya, T.6
  • 44
    • 70350004240 scopus 로고    scopus 로고
    • Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3
    • Zeng W, Xu M, Liu S, Sun L, Chen ZJ. 2009. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol Cell 36:315-325. https://doi.org/10.1016/j.molcel.2009.09.037.
    • (2009) Mol Cell , vol.36 , pp. 315-325
    • Zeng, W.1    Xu, M.2    Liu, S.3    Sun, L.4    Chen, Z.J.5
  • 45
    • 34249058119 scopus 로고    scopus 로고
    • The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways
    • Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J, Lin R. 2007. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol 8:592-600. https://doi.org/10.1038/ni1465.
    • (2007) Nat Immunol , vol.8 , pp. 592-600
    • Zhao, T.1    Yang, L.2    Sun, Q.3    Arguello, M.4    Ballard, D.W.5    Hiscott, J.6    Lin, R.7
  • 46
    • 80053131464 scopus 로고    scopus 로고
    • Mapping a dynamic innate immunity protein interaction network regulating type I interferon production
    • Li S, Wang L, Berman M, Kong YY, Dorf ME. 2011. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity 35:426-440. https://doi.org/10.1016/j.immuni.2011.06.014.
    • (2011) Immunity , vol.35 , pp. 426-440
    • Li, S.1    Wang, L.2    Berman, M.3    Kong, Y.Y.4    Dorf, M.E.5
  • 47
    • 77951247349 scopus 로고    scopus 로고
    • Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response
    • Mao AP, Li S, Zhong B, Li Y, Yan J, Li Q, Teng C, Shu HB. 2010. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-beta (IFN-beta) and cellular antiviral response. J Biol Chem 285:9470-9476. https://doi.org/10.1074/jbc.M109.071043.
    • (2010) J Biol Chem , vol.285 , pp. 9470-9476
    • Mao, A.P.1    Li, S.2    Zhong, B.3    Li, Y.4    Yan, J.5    Li, Q.6    Teng, C.7    Shu, H.B.8
  • 49
    • 77949427242 scopus 로고    scopus 로고
    • TRAF5 is a downstream target of MAVS in antiviral innate immune signaling
    • Tang ED, Wang CY. 2010. TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS One 5:e9172. https://doi.org/10.1371/journal.pone.0009172.
    • (2010) PLoS One , vol.5
    • Tang, E.D.1    Wang, C.Y.2
  • 50
    • 84892606477 scopus 로고    scopus 로고
    • TRIM14 is a mitochondrial adaptor that facilitates retinoic acidinducible gene-I-like receptor-mediated innate immune response
    • Zhou Z, Jia X, Xue Q, Dou Z, Ma Y, Zhao Z, Jiang Z, He B, Jin Q, Wang J. 2014. TRIM14 is a mitochondrial adaptor that facilitates retinoic acidinducible gene-I-like receptor-mediated innate immune response. Proc Natl Acad Sci U S A 111:E245-E254. https://doi.org/10.1073/pnas.1316941111.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E245-E254
    • Zhou, Z.1    Jia, X.2    Xue, Q.3    Dou, Z.4    Ma, Y.5    Zhao, Z.6    Jiang, Z.7    He, B.8    Jin, Q.9    Wang, J.10
  • 52
    • 34249058290 scopus 로고    scopus 로고
    • Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK
    • Guo B, Cheng G. 2007. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J Biol Chem 282:11817-11826. https://doi.org/10.1074/jbc.M700017200.
    • (2007) J Biol Chem , vol.282 , pp. 11817-11826
    • Guo, B.1    Cheng, G.2
  • 53
    • 69049086481 scopus 로고    scopus 로고
    • TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis
    • Kawagoe T, Takeuchi O, Takabatake Y, Kato H, Isaka Y, Tsujimura T, Akira S. 2009. TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol 10:965-972. https://doi.org/10.1038/ni.1771.
    • (2009) Nat Immunol , vol.10 , pp. 965-972
    • Kawagoe, T.1    Takeuchi, O.2    Takabatake, Y.3    Kato, H.4    Isaka, Y.5    Tsujimura, T.6    Akira, S.7
  • 54
    • 77956304154 scopus 로고    scopus 로고
    • Tom70 mediates activation of interferon regulatory factor 3 on mitochondria
    • Liu XY, Wei B, Shi HX, Shan YF, Wang C. 2010. Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res 20:994-1011. https://doi.org/10.1038/cr.2010.103.
    • (2010) Cell Res , vol.20 , pp. 994-1011
    • Liu, X.Y.1    Wei, B.2    Shi, H.X.3    Shan, Y.F.4    Wang, C.5
  • 55
    • 84924778328 scopus 로고    scopus 로고
    • Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
    • Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630. https://doi.org/10.1126/science.aaa2630.
    • (2015) Science , vol.347
    • Liu, S.1    Cai, X.2    Wu, J.3    Cong, Q.4    Chen, X.5    Li, T.6    Du, F.7    Ren, J.8    Wu, Y.T.9    Grishin, N.V.10    Chen, Z.J.11
  • 58
    • 34447342317 scopus 로고    scopus 로고
    • SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK
    • Ryzhakov G, Randow F. 2007. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J 26:3180-3190. https://doi.org/10.1038/sj.emboj.7601743.
    • (2007) EMBO J , vol.26 , pp. 3180-3190
    • Ryzhakov, G.1    Randow, F.2
  • 59
    • 10844219793 scopus 로고    scopus 로고
    • Cutting edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation
    • Sasai M, Oshiumi H, Matsumoto M, Inoue N, Fujita F, Nakanishi M, Seya T. 2005. Cutting edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol 174: 27-30. https://doi.org/10.4049/jimmunol.174.1.27.
    • (2005) J Immunol , vol.174 , pp. 27-30
    • Sasai, M.1    Oshiumi, H.2    Matsumoto, M.3    Inoue, N.4    Fujita, F.5    Nakanishi, M.6    Seya, T.7
  • 60
    • 33845416390 scopus 로고    scopus 로고
    • NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction
    • Sasai M, Shingai M, Funami K, Yoneyama M, Fujita T, Matsumoto M, Seya T. 2006. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J Immunol 177: 8676-8683. https://doi.org/10.4049/jimmunol.177.12.8676.
    • (2006) J Immunol , vol.177 , pp. 8676-8683
    • Sasai, M.1    Shingai, M.2    Funami, K.3    Yoneyama, M.4    Fujita, T.5    Matsumoto, M.6    Seya, T.7
  • 62
    • 77649314475 scopus 로고    scopus 로고
    • Expanding the substantial interactome of NEMO using protein microarrays
    • Fenner BJ, Scannell M, Prehn JH. 2010. Expanding the substantial interactome of NEMO using protein microarrays. PLoS One 5:e8799. https://doi.org/10.1371/journal.pone.0008799.
    • (2010) PLoS One , vol.5
    • Fenner, B.J.1    Scannell, M.2    Prehn, J.H.3
  • 63
    • 84872856989 scopus 로고    scopus 로고
    • Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus-and dsRNA-stimulated human lung epithelial cells
    • Li Y, Xie J, Wu S, Xia J, Zhang P, Liu C, Zhang P, Huang X. 2013. Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus-and dsRNA-stimulated human lung epithelial cells. PLoS One 8:e55108. https://doi.org/10.1371/journal.pone.0055108.
    • (2013) PLoS One , vol.8
    • Li, Y.1    Xie, J.2    Wu, S.3    Xia, J.4    Zhang, P.5    Liu, C.6    Zhang, P.7    Huang, X.8
  • 64
    • 0346457016 scopus 로고    scopus 로고
    • Identification of gene structure and subcellular localization of human centaurin alpha 2, and p42IP4, a family of two highly homologous, Ins 1, 3, 4, 5-P4-/PtdIns 3, 4, 5-P3-binding, adapter proteins
    • Hanck T, Stricker R, Sedehizade F, Reiser G. 2004. Identification of gene structure and subcellular localization of human centaurin alpha 2, and p42IP4, a family of two highly homologous, Ins 1, 3, 4, 5-P4-/PtdIns 3, 4, 5-P3-binding, adapter proteins. J Neurochem 88:326-336.
    • (2004) J Neurochem , vol.88 , pp. 326-336
    • Hanck, T.1    Stricker, R.2    Sedehizade, F.3    Reiser, G.4
  • 66
    • 0036011165 scopus 로고    scopus 로고
    • Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle
    • Whitley P, Gibbard AM, Koumanov F, Oldfield S, Kilgour EE, Prestwich GD, Holman GD. 2002. Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle. Eur J Cell Biol 81:222-230. https://doi.org/10.1078/0171-9335-00242.
    • (2002) Eur J Cell Biol , vol.81 , pp. 222-230
    • Whitley, P.1    Gibbard, A.M.2    Koumanov, F.3    Oldfield, S.4    Kilgour, E.E.5    Prestwich, G.D.6    Holman, G.D.7
  • 68
    • 35148814898 scopus 로고    scopus 로고
    • Arf GAPs as regulators of the actin cytoskeleton
    • Randazzo PA, Inoue H, Bharti S. 2007. Arf GAPs as regulators of the actin cytoskeleton. Biol Cell 99:583-600. https://doi.org/10.1042/BC20070034.
    • (2007) Biol Cell , vol.99 , pp. 583-600
    • Randazzo, P.A.1    Inoue, H.2    Bharti, S.3
  • 69
    • 33845975666 scopus 로고    scopus 로고
    • Centaurin beta1 down-regulates nucleotide-binding oligomerization domains 1-and 2-dependent NF-kappaB activation
    • Yamamoto-Furusho JK, Barnich N, Xavier R, Hisamatsu T, Podolsky DK. 2006. Centaurin beta1 down-regulates nucleotide-binding oligomerization domains 1-and 2-dependent NF-kappaB activation. J Biol Chem 281:36060-36070. https://doi.org/10.1074/jbc.M602383200.
    • (2006) J Biol Chem , vol.281 , pp. 36060-36070
    • Yamamoto-Furusho, J.K.1    Barnich, N.2    Xavier, R.3    Hisamatsu, T.4    Podolsky, D.K.5
  • 70
    • 84902650399 scopus 로고    scopus 로고
    • ADAP2 in heart development: a candidate gene for the occurrence of cardiovascular malformations in NF1 microdeletion syndrome
    • Venturin M, Carra S, Gaudenzi G, Brunelli S, Gallo GR, Moncini S, Cotelli F, Riva P. 2014. ADAP2 in heart development: a candidate gene for the occurrence of cardiovascular malformations in NF1 microdeletion syndrome. J Med Genet 51:436-443. https://doi.org/10.1136/jmedgenet-2013-102240.
    • (2014) J Med Genet , vol.51 , pp. 436-443
    • Venturin, M.1    Carra, S.2    Gaudenzi, G.3    Brunelli, S.4    Gallo, G.R.5    Moncini, S.6    Cotelli, F.7    Riva, P.8
  • 73
    • 34547188530 scopus 로고    scopus 로고
    • Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes
    • Ikeda F, Hecker CM, Rozenknop A, Nordmeier RD, Rogov V, Hofmann K, Akira S, Dotsch V, Dikic I. 2007. Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO J 26:3451-3462. https://doi.org/10.1038/sj.emboj.7601773.
    • (2007) EMBO J , vol.26 , pp. 3451-3462
    • Ikeda, F.1    Hecker, C.M.2    Rozenknop, A.3    Nordmeier, R.D.4    Rogov, V.5    Hofmann, K.6    Akira, S.7    Dotsch, V.8    Dikic, I.9
  • 74
    • 84866484016 scopus 로고    scopus 로고
    • NEMO binds ubiquitinated TANK-binding kinase 1 (TBK1) to regulate innate immune responses to RNA viruses
    • Wang L, Li S, Dorf ME. 2012. NEMO binds ubiquitinated TANK-binding kinase 1 (TBK1) to regulate innate immune responses to RNA viruses. PLoS One 7:e43756. https://doi.org/10.1371/journal.pone.0043756.
    • (2012) PLoS One , vol.7
    • Wang, L.1    Li, S.2    Dorf, M.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.