-
1
-
-
79952717517
-
VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses
-
Wang L, Rubinstein R, Lines JL, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med. 2011;208:577–592.
-
(2011)
J Exp Med
, vol.208
, pp. 577-592
-
-
Wang, L.1
Rubinstein, R.2
Lines, J.L.3
-
2
-
-
80051930238
-
Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models
-
Flies DB, Wang S, Xu H, Chen L. Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J Immunol. 2011;187:1537–1541.
-
(2011)
J Immunol
, vol.187
, pp. 1537-1541
-
-
Flies, D.B.1
Wang, S.2
Xu, H.3
Chen, L.4
-
3
-
-
84940456000
-
Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53
-
Yoon KW, Byun S, Kwon E, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science. 2015;349:1261669.
-
(2015)
Science
, vol.349
, pp. 1261669
-
-
Yoon, K.W.1
Byun, S.2
Kwon, E.3
-
4
-
-
78049450415
-
GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase
-
Sakr MA, Takino T, Domoto T, et al. GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci. 2010;101:2368–2374.
-
(2010)
Cancer Sci
, vol.101
, pp. 2368-2374
-
-
Sakr, M.A.1
Takino, T.2
Domoto, T.3
-
5
-
-
77951251053
-
Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells
-
Aloia L, Parisi S, Fusco L, Pastore L, Russo T. Differentiation of embryonic stem cells 1 (Dies1) is a component of bone morphogenetic protein 4 (BMP4) signaling pathway required for proper differentiation of mouse embryonic stem cells. J Biol Chem. 2010;285:7776–7783.
-
(2010)
J Biol Chem
, vol.285
, pp. 7776-7783
-
-
Aloia, L.1
Parisi, S.2
Fusco, L.3
Pastore, L.4
Russo, T.5
-
7
-
-
84864277995
-
Evolution of the B7 family: Co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC
-
Flajnik MF, Tlapakova T, Criscitiello MF, Krylov V, Ohta Y. Evolution of the B7 family: Co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC. Immunogenetics. 2012;64:571–590.
-
(2012)
Immunogenetics
, vol.64
, pp. 571-590
-
-
Flajnik, M.F.1
Tlapakova, T.2
Criscitiello, M.F.3
Krylov, V.4
Ohta, Y.5
-
8
-
-
84941312272
-
Characterization of programmed death-1 homologue-1 (PD-1H) expression and function in normal and HIV infected individuals
-
Bharaj P, Chahar HS, Alozie OK, et al. Characterization of programmed death-1 homologue-1 (PD-1H) expression and function in normal and HIV infected individuals. PLoS ONE. 2014;9:e109103.
-
(2014)
PLoS ONE
, vol.9
-
-
Bharaj, P.1
Chahar, H.S.2
Alozie, O.K.3
-
9
-
-
84899722578
-
Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity
-
Flies DB, Han X, Higuchi T, et al. Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J Clin Invest. 2014;124:1966–1975.
-
(2014)
J Clin Invest
, vol.124
, pp. 1966-1975
-
-
Flies, D.B.1
Han, X.2
Higuchi, T.3
-
10
-
-
84929650544
-
Mechanistic assessment of PD-1H coinhibitory receptor-induced T cell tolerance to allogeneic antigens
-
Flies DB, Higuchi T, Chen L. Mechanistic assessment of PD-1H coinhibitory receptor-induced T cell tolerance to allogeneic antigens. J Immunol. 2015;194:5294–5304.
-
(2015)
J Immunol
, vol.194
, pp. 5294-5304
-
-
Flies, D.B.1
Higuchi, T.2
Chen, L.3
-
11
-
-
84897445677
-
VISTA is an immune checkpoint molecule for human T cells
-
Lines JL, Pantazi E, Mak J, et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 2014;74:1924–1932.
-
(2014)
Cancer Res
, vol.74
, pp. 1924-1932
-
-
Lines, J.L.1
Pantazi, E.2
Mak, J.3
-
12
-
-
84907900323
-
Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity
-
Wang L, Le Mercier I, Putra J, et al. Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc Natl Acad Sci USA. 2014;111:14846–14851.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 14846-14851
-
-
Wang, L.1
Le Mercier, I.2
Putra, J.3
-
13
-
-
84887180216
-
miR-125b regulates the early steps of ESC differentiation through dies1 in a TGF-independent manner
-
Battista M, Musto A, Navarra A, Minopoli G, Russo T, Parisi S. miR-125b regulates the early steps of ESC differentiation through dies1 in a TGF-independent manner. Int J Mol Sci. 2013;14:13482–13496.
-
(2013)
Int J Mol Sci
, vol.14
, pp. 13482-13496
-
-
Battista, M.1
Musto, A.2
Navarra, A.3
Minopoli, G.4
Russo, T.5
Parisi, S.6
-
14
-
-
84868120534
-
A regulatory loop involving Dies1 and miR-125a controls BMP4 signaling in mouse embryonic stem cells
-
Parisi S, Battista M, Musto A, Navarra A, Tarantino C, Russo T. A regulatory loop involving Dies1 and miR-125a controls BMP4 signaling in mouse embryonic stem cells. FASEB J. 2012;26:3957–3968.
-
(2012)
FASEB J
, vol.26
, pp. 3957-3968
-
-
Parisi, S.1
Battista, M.2
Musto, A.3
Navarra, A.4
Tarantino, C.5
Russo, T.6
-
15
-
-
77954491295
-
A mouse knockout library for secreted and transmembrane proteins
-
Tang T, Li L, Tang J, et al. A mouse knockout library for secreted and transmembrane proteins. Nat Biotechnol. 2010;28:749–755.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 749-755
-
-
Tang, T.1
Li, L.2
Tang, J.3
-
16
-
-
84940469042
-
Selective involvement of the checkpoint regulator VISTA in suppression of B-cell, but not T-cell, responsiveness by monocytic myeloid-derived suppressor cells from mice infected with an immunodeficiency-causing retrovirus
-
Green KA, Wang L, Noelle RJ, Green WR. Selective involvement of the checkpoint regulator VISTA in suppression of B-cell, but not T-cell, responsiveness by monocytic myeloid-derived suppressor cells from mice infected with an immunodeficiency-causing retrovirus. J Virol. 2015;89:9693–9698.
-
(2015)
J Virol
, vol.89
, pp. 9693-9698
-
-
Green, K.A.1
Wang, L.2
Noelle, R.J.3
Green, W.R.4
-
17
-
-
33845660297
-
Induction of a gene expression program in dendritic cells with a cross-linking IgM antibody to the co-stimulatory molecule B7-DC
-
Blocki FA, Radhakrishnan S, Van Keulen VP, et al. Induction of a gene expression program in dendritic cells with a cross-linking IgM antibody to the co-stimulatory molecule B7-DC. FASEB J. 2006;20:2408–2410.
-
(2006)
FASEB J
, vol.20
, pp. 2408-2410
-
-
Blocki, F.A.1
Radhakrishnan, S.2
Van Keulen, V.P.3
-
18
-
-
33644853625
-
Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12
-
Van Keulen VP, Ciric B, Radhakrishnan S, et al. Immunomodulation using the recombinant monoclonal human B7-DC cross-linking antibody rHIgM12. Clin Exp Immunol. 2006;143:314–321.
-
(2006)
Clin Exp Immunol
, vol.143
, pp. 314-321
-
-
Van Keulen, V.P.1
Ciric, B.2
Radhakrishnan, S.3
-
20
-
-
3142721882
-
Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity
-
Radhakrishnan S, Nguyen LT, Ciric B, et al. Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferring antitumor immunity. Cancer Res. 2004;64:4965–4972.
-
(2004)
Cancer Res
, vol.64
, pp. 4965-4972
-
-
Radhakrishnan, S.1
Nguyen, L.T.2
Ciric, B.3
-
21
-
-
33846503502
-
B7-DC/PD-L2 cross-linking induces NF-kappaB-dependent protection of dendritic cells from cell death
-
Radhakrishnan S, Nguyen LT, Ciric B, Van Keulen VP, Pease LR. B7-DC/PD-L2 cross-linking induces NF-kappaB-dependent protection of dendritic cells from cell death. J Immunol. 2007;178:1426–1432.
-
(2007)
J Immunol
, vol.178
, pp. 1426-1432
-
-
Radhakrishnan, S.1
Nguyen, L.T.2
Ciric, B.3
Van Keulen, V.P.4
Pease, L.R.5
-
23
-
-
79953151458
-
Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion
-
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 2011;331:1565–1570.
-
(2011)
Science
, vol.331
, pp. 1565-1570
-
-
Schreiber, R.D.1
Old, L.J.2
Smyth, M.J.3
-
24
-
-
84944277572
-
Reprogramming the tumor microenvironment: Tumor-induced immunosuppressive factors paralyze T cells
-
Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: Tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology. 2015;4:e1016700.
-
(2015)
Oncoimmunology
, vol.4
-
-
Wu, A.A.1
Drake, V.2
Huang, H.S.3
Chiu, S.4
Zheng, L.5
-
25
-
-
84928062583
-
Immune checkpoint blockade: A common denominator approach to cancer therapy
-
Topalian Suzanne L, Drake Charles G, Pardoll Drew M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–461.
-
(2015)
Cancer Cell
, vol.27
, pp. 450-461
-
-
Topalian Suzanne, L.1
Drake Charles, G.2
Pardoll Drew, M.3
-
26
-
-
58749096691
-
The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation
-
Wolchok JD, Saenger Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist. 2008;13(Suppl 4):2–9.
-
(2008)
Oncologist
, vol.13
, pp. 2-9
-
-
Wolchok, J.D.1
Saenger, Y.2
-
27
-
-
84941711371
-
Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future
-
Chen L, Han X. Anti–PD-1/PD-L1 therapy of human cancer: Past, present, and future. J Clin Invest. 2015;125:3384–3391.
-
(2015)
J Clin Invest
, vol.125
, pp. 3384-3391
-
-
Chen, L.1
Han, X.2
-
28
-
-
84858766182
-
The blockade of immune checkpoints in cancer immunotherapy
-
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–264.
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 252-264
-
-
Pardoll, D.M.1
-
29
-
-
84859128199
-
Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape
-
Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37.
-
(2012)
Sci Transl Med
, vol.4
, pp. 127ra37
-
-
Taube, J.M.1
Anders, R.A.2
Young, G.D.3
-
30
-
-
84923090821
-
Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma
-
Ritprajak P, Azuma M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol. 2015;51:221–228.
-
(2015)
Oral Oncol
, vol.51
, pp. 221-228
-
-
Ritprajak, P.1
Azuma, M.2
-
31
-
-
84939456588
-
Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer
-
He J, Hu Y, Hu M, Li B. Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep. 2015;5:13110.
-
(2015)
Sci Rep
, vol.5
, pp. 13110
-
-
He, J.1
Hu, Y.2
Hu, M.3
Li, B.4
-
32
-
-
84897429090
-
VISTA regulates the development of protective antitumor immunity
-
Le Mercier I, Chen W, Lines JL, et al. VISTA regulates the development of protective antitumor immunity. Cancer Res. 2014;74:1933–1944.
-
(2014)
Cancer Res
, vol.74
, pp. 1933-1944
-
-
Le Mercier, I.1
Chen, W.2
Lines, J.L.3
-
33
-
-
84968867052
-
Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma
-
Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol. 2016;57:54–60.
-
(2016)
Oral Oncol
, vol.57
, pp. 54-60
-
-
Kondo, Y.1
Ohno, T.2
Nishii, N.3
Harada, K.4
Yagita, H.5
Azuma, M.6
-
34
-
-
84930208138
-
Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses
-
Liu J, Yuan Y, Chen W, et al. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci USA. 2015;112:6682–6687.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 6682-6687
-
-
Liu, J.1
Yuan, Y.2
Chen, W.3
-
35
-
-
84959133719
-
Combination cancer immunotherapies tailored to the tumour microenvironment
-
Smyth MJ, Ngiow SF, Ribas A, Teng MWL. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–158.
-
(2016)
Nat Rev Clin Oncol
, vol.13
, pp. 143-158
-
-
Smyth, M.J.1
Ngiow, S.F.2
Ribas, A.3
Teng, M.W.L.4
-
36
-
-
58149483422
-
CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit
-
Yuan J, Gnjatic S, Li H, et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA. 2008;105:20410–20415.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 20410-20415
-
-
Yuan, J.1
Gnjatic, S.2
Li, H.3
-
37
-
-
54449091476
-
CTLA-4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients
-
Liakou CI, Kamat A, Tang DN, et al. CTLA-4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci. 2008;105:14987–14992.
-
(2008)
Proc Natl Acad Sci
, vol.105
, pp. 14987-14992
-
-
Liakou, C.I.1
Kamat, A.2
Tang, D.N.3
-
38
-
-
85003055100
-
Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy
-
Ng Tang D, Shen Y, Sun J, et al. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol Res. 2013;1:229–234.
-
(2013)
Cancer Immunol Res.
, vol.1
, pp. 229-234
-
-
Ng, T.D.1
Shen, Y.2
Sun, J.3
-
39
-
-
80051694786
-
The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti–CTLA-4 therapy
-
Fu T, He Q, Sharma P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti–CTLA-4 therapy. Cancer Res. 2011;71:5445–5454.
-
(2011)
Cancer Res
, vol.71
, pp. 5445-5454
-
-
Fu, T.1
He, Q.2
Sharma, P.3
-
40
-
-
84996490571
-
CD4 T cells require ICOS-mediated PI3K-signaling to increase T-bet expression in the setting of anti-CTLA-4 therapy
-
Chen H, Fu T, Suh W-K, et al. CD4 T cells require ICOS-mediated PI3K-signaling to increase T-bet expression in the setting of anti-CTLA-4 therapy. Cancer Immunol Res. 2014;2:167–176.
-
(2014)
Cancer Immunol Res
, vol.2
, pp. 167-176
-
-
Chen, H.1
Fu, T.2
Suh, W.-K.3
-
41
-
-
68149155982
-
Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies
-
Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti–CTLA-4 antibodies. J Exp Med. 2009;206:1717–1725.
-
(2009)
J Exp Med
, vol.206
, pp. 1717-1725
-
-
Peggs, K.S.1
Quezada, S.A.2
Chambers, C.A.3
Korman, A.J.4
Allison, J.P.5
-
42
-
-
84878936788
-
Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells
-
Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 2013;1:32–42.
-
(2013)
Cancer Immunol Res
, vol.1
, pp. 32-42
-
-
Selby, M.J.1
Engelhardt, J.J.2
Quigley, M.3
-
43
-
-
84929192743
-
Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients
-
Romano E, Kusio-Kobialka M, Foukas PG, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci USA. 2015;112:6140–6145.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. 6140-6145
-
-
Romano, E.1
Kusio-Kobialka, M.2
Foukas, P.G.3
-
44
-
-
28244492012
-
Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade
-
Maker AV, Attia P, Rosenberg SA. Analysis of the cellular mechanism of antitumor responses and autoimmunity in patients treated with CTLA-4 blockade. J Immunol. 2005;175:7746–7754.
-
(2005)
J Immunol
, vol.175
, pp. 7746-7754
-
-
Maker, A.V.1
Attia, P.2
Rosenberg, S.A.3
-
45
-
-
51349165526
-
CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion
-
Kavanagh B, O'Brien S, Lee D, et al. CTLA4 blockade expands FoxP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood. 2008;112:1175–1183.
-
(2008)
Blood
, vol.112
, pp. 1175-1183
-
-
Kavanagh, B.1
O'Brien, S.2
Lee, D.3
-
46
-
-
27144496045
-
CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms
-
Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–9553.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 9543-9553
-
-
Parry, R.V.1
Chemnitz, J.M.2
Frauwirth, K.A.3
-
48
-
-
84920956732
-
PD-1 blockade induces responses by inhibiting adaptive immune resistance
-
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571.
-
(2014)
Nature
, vol.515
, pp. 568-571
-
-
Tumeh, P.C.1
Harview, C.L.2
Yearley, J.H.3
-
49
-
-
84862859820
-
Safety, activity, and immune correlates of anti–PD-1 antibody in cancer
-
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–2454.
-
(2012)
N Engl J Med
, vol.366
, pp. 2443-2454
-
-
Topalian, S.L.1
Hodi, F.S.2
Brahmer, J.R.3
-
50
-
-
84920956735
-
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients
-
Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–567.
-
(2014)
Nature
, vol.515
, pp. 563-567
-
-
Herbst, R.S.1
Soria, J.-C.2
Kowanetz, M.3
-
51
-
-
84925222119
-
Nivolumab in previously untreated melanoma without BRAF mutation
-
Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–330.
-
(2015)
N Engl J Med
, vol.372
, pp. 320-330
-
-
Robert, C.1
Long, G.V.2
Brady, B.3
-
52
-
-
77749279776
-
PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors
-
Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 2010;107:4275–4280.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 4275-4280
-
-
Curran, M.A.1
Montalvo, W.2
Yagita, H.3
Allison, J.P.4
-
53
-
-
84926525215
-
Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer
-
Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–377.
-
(2015)
Nature
, vol.520
, pp. 373-377
-
-
Twyman-Saint Victor, C.1
Rech, A.J.2
Maity, A.3
-
54
-
-
84987819121
-
Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma
-
Daud AI, Loo K, Pauli ML, et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest. 2016;126:3447–3452.
-
(2016)
J Clin Invest
, vol.126
, pp. 3447-3452
-
-
Daud, A.I.1
Loo, K.2
Pauli, M.L.3
-
55
-
-
54449091476
-
CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients
-
Liakou CI, Kamat A, Tang DN, et al. CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA. 2008;105:14987–14992.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 14987-14992
-
-
Liakou, C.I.1
Kamat, A.2
Tang, D.N.3
-
56
-
-
84929481482
-
Nivolumab and ipilimumab versus ipilimumab in untreated melanoma
-
Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372:2006–2017.
-
(2015)
N Engl J Med
, vol.372
, pp. 2006-2017
-
-
Postow, M.A.1
Chesney, J.2
Pavlick, A.C.3
-
57
-
-
84936147067
-
Combined nivolumab and ipilimumab or monotherapy in untreated melanoma
-
Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.
-
(2015)
N Engl J Med
, vol.373
, pp. 23-34
-
-
Larkin, J.1
Chiarion-Sileni, V.2
Gonzalez, R.3
-
58
-
-
84905994658
-
Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells
-
Kim K, Skora AD, Li Z, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA. 2014;111:11774–11779.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 11774-11779
-
-
Kim, K.1
Skora, A.D.2
Li, Z.3
-
59
-
-
84884556145
-
History of myeloid-derived suppressor cells
-
Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13:739–752.
-
(2013)
Nat Rev Cancer
, vol.13
, pp. 739-752
-
-
Talmadge, J.E.1
Gabrilovich, D.I.2
-
60
-
-
54049134747
-
Subsets of myeloid-derived suppressor cells in tumor-bearing mice
-
Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181:5791–5802.
-
(2008)
J Immunol
, vol.181
, pp. 5791-5802
-
-
Youn, J.-I.1
Nagaraj, S.2
Collazo, M.3
Gabrilovich, D.I.4
-
61
-
-
84855301911
-
Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice
-
Youn J-I, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol. 2012;91:167–181.
-
(2012)
J Leukoc Biol
, vol.91
, pp. 167-181
-
-
Youn, J.-I.1
Collazo, M.2
Shalova, I.N.3
Biswas, S.K.4
Gabrilovich, D.I.5
-
63
-
-
74949125667
-
BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination
-
Derré L, Rivals J-P, Jandus C, et al. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest. 2010;120:157–167.
-
(2010)
J Clin Invest
, vol.120
, pp. 157-167
-
-
Derré, L.1
Rivals, J.-P.2
Jandus, C.3
-
64
-
-
75149123468
-
Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine
-
Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S. Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res. 2010;70:68–77.
-
(2010)
Cancer Res
, vol.70
, pp. 68-77
-
-
Srivastava, M.K.1
Sinha, P.2
Clements, V.K.3
Rodriguez, P.4
Ostrand-Rosenberg, S.5
-
68
-
-
80054694464
-
Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells
-
Molon B, Ugel S, Del Pozzo F, et al. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208:1949–1962.
-
(2011)
J Exp Med
, vol.208
, pp. 1949-1962
-
-
Molon, B.1
Ugel, S.2
Del Pozzo, F.3
-
69
-
-
84899753178
-
PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation
-
Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211:781–790.
-
(2014)
J Exp Med
, vol.211
, pp. 781-790
-
-
Noman, M.Z.1
Desantis, G.2
Janji, B.3
-
70
-
-
84907484156
-
CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T cell checkpoint immunotherapy in pancreatic cancer models
-
Zhu Y, Knolhoff BL, Meyer MA, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–5069.
-
(2014)
Cancer Res
, vol.74
, pp. 5057-5069
-
-
Zhu, Y.1
Knolhoff, B.L.2
Meyer, M.A.3
-
71
-
-
84887481716
-
CSF-1R inhibition alters macrophage polarization and blocks glioma progression
-
Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–1272.
-
(2013)
Nat Med
, vol.19
, pp. 1264-1272
-
-
Pyonteck, S.M.1
Akkari, L.2
Schuhmacher, A.J.3
-
72
-
-
77957744369
-
Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
-
Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207:2187–2194.
-
(2010)
J Exp Med
, vol.207
, pp. 2187-2194
-
-
Sakuishi, K.1
Apetoh, L.2
Sullivan, J.M.3
Blazar, B.R.4
Kuchroo, V.K.5
Anderson, A.C.6
-
73
-
-
77957059176
-
Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection
-
Jin H-T, Anderson AC, Tan WG, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA. 2010;107:14733–14738.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 14733-14738
-
-
Jin, H.-T.1
Anderson, A.C.2
Tan, W.G.3
-
74
-
-
0030009494
-
Independent modes of natural killing distinguished in mice lacking Lag3
-
Miyazaki T, Dierich A, Benoist C, Mathis D. Independent modes of natural killing distinguished in mice lacking Lag3. Science. 1996;272:405–408.
-
(1996)
Science
, vol.272
, pp. 405-408
-
-
Miyazaki, T.1
Dierich, A.2
Benoist, C.3
Mathis, D.4
-
75
-
-
79951684125
-
PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice
-
Okazaki T, Okazaki I-m, Wang J, et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med. 2011;208:395–407.
-
(2011)
J Exp Med
, vol.208
, pp. 395-407
-
-
Okazaki, T.1
Okazaki, I.-M.2
Wang, J.3
-
76
-
-
84929000784
-
TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients
-
Chauvin J-M, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. J Clin Invest. 2015;125:2046–2058.
-
(2015)
J Clin Invest
, vol.125
, pp. 2046-2058
-
-
Chauvin, J.-M.1
Pagliano, O.2
Fourcade, J.3
-
77
-
-
85014399840
-
Mechanisms of TIGIT-driven immune suppression in cancer
-
Kurtulus S, Sakuishi K, Zhang H, et al. Mechanisms of TIGIT-driven immune suppression in cancer. J Immunother Cancer. 2014;2:O13.
-
(2014)
J Immunother Cancer
, vol.2
, pp. O13
-
-
Kurtulus, S.1
Sakuishi, K.2
Zhang, H.3
-
78
-
-
84959542771
-
The nature of myeloid-derived suppressor cells in the tumor microenvironment
-
Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–220.
-
(2016)
Trends Immunol
, vol.37
, pp. 208-220
-
-
Kumar, V.1
Patel, S.2
Tcyganov, E.3
Gabrilovich, D.I.4
-
79
-
-
84896523495
-
Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A–specific T cells
-
Weide B, Martens A, Zelba H, et al. Myeloid-derived suppressor cells predict survival of patients with advanced melanoma: comparison with regulatory T cells and NY-ESO-1- or melan-A–specific T cells. Clin Cancer Res. 2014;20:1601–1609.
-
(2014)
Clin Cancer Res
, vol.20
, pp. 1601-1609
-
-
Weide, B.1
Martens, A.2
Zelba, H.3
-
81
-
-
84989844879
-
T-cell exhaustion in the tumor microenvironment
-
Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.
-
(2015)
Cell Death Dis
, vol.6
-
-
Jiang, Y.1
Li, Y.2
Zhu, B.3
-
83
-
-
85014399840
-
Mechanisms of TIGIT-driven immune suppression in cancer
-
Kurtulus S, Sakuishi K, Zhang H, et al. Mechanisms of TIGIT-driven immune suppression in cancer. J Immunother Cancer. 2014;2:O13–O.
-
(2014)
J Immunother Cancer
, vol.2
, pp. O13-O
-
-
Kurtulus, S.1
Sakuishi, K.2
Zhang, H.3
-
85
-
-
0036372821
-
Effective tumor immunotherapy: Start the engine, release the brakes, step on the gas pedal,…and get ready to face autoimmunity
-
Tirapu I, Mazzolini G, Rodriguez-Calvillo M, et al. Effective tumor immunotherapy: Start the engine, release the brakes, step on the gas pedal,…and get ready to face autoimmunity. Arch Immunol Ther Exp (Warsz). 2002;50:13–18.
-
(2002)
Arch Immunol Ther Exp (Warsz)
, vol.50
, pp. 13-18
-
-
Tirapu, I.1
Mazzolini, G.2
Rodriguez-Calvillo, M.3
-
86
-
-
84940378016
-
Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS
-
Sanmamed MF, Pastor F, Rodriguez A, et al. Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol. 2015;42:640–655.
-
(2015)
Semin Oncol
, vol.42
, pp. 640-655
-
-
Sanmamed, M.F.1
Pastor, F.2
Rodriguez, A.3
-
87
-
-
84922576110
-
The inducible costimulator augments Tc17 cell responses to self and tumor tissue
-
Nelson MH, Kundimi S, Bowers JS, et al. The inducible costimulator augments Tc17 cell responses to self and tumor tissue. J Immunol. 2015;194:1737–1747.
-
(2015)
J Immunol
, vol.194
, pp. 1737-1747
-
-
Nelson, M.H.1
Kundimi, S.2
Bowers, J.S.3
-
88
-
-
84897940775
-
Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy
-
Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med. 2014;211:715–725.
-
(2014)
J Exp Med
, vol.211
, pp. 715-725
-
-
Fan, X.1
Quezada, S.A.2
Sepulveda, M.A.3
Sharma, P.4
Allison, J.P.5
-
89
-
-
85016040815
-
Gp96-Ig/costimulator (OX40L, ICOSL, or 4-1BBL) combination vaccine improves T-cell priming and enhances immunity, memory, and tumor elimination
-
Fromm G, de Silva S, Giffin L, Xu X, Rose J, Schreiber TH. Gp96-Ig/costimulator (OX40L, ICOSL, or 4-1BBL) combination vaccine improves T-cell priming and enhances immunity, memory, and tumor elimination. Cancer Immunol Res. 2016;4:766–778.
-
(2016)
Cancer Immunol Res
, vol.4
, pp. 766-778
-
-
Fromm, G.1
de Silva, S.2
Giffin, L.3
Xu, X.4
Rose, J.5
Schreiber, T.H.6
-
90
-
-
84925448470
-
OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: A clue for successful immunotherapy
-
Shibahara I, Saito R, Zhang R, et al. OX40 ligand expressed in glioblastoma modulates adaptive immunity depending on the microenvironment: A clue for successful immunotherapy. Mol Cancer. 2015;14:41.
-
(2015)
Mol Cancer
, vol.14
, pp. 41
-
-
Shibahara, I.1
Saito, R.2
Zhang, R.3
-
91
-
-
84996554960
-
Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity
-
Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res. 2014;2:142–153.
-
(2014)
Cancer Immunol Res
, vol.2
, pp. 142-153
-
-
Redmond, W.L.1
Linch, S.N.2
Kasiewicz, M.J.3
-
92
-
-
0031007143
-
Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors
-
Melero I, Shuford WW, Newby SA, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3:682–685.
-
(1997)
Nat Med
, vol.3
, pp. 682-685
-
-
Melero, I.1
Shuford, W.W.2
Newby, S.A.3
-
93
-
-
84884822262
-
Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137
-
Li S-Y, Liu Y. Immunotherapy of melanoma with the immune costimulatory monoclonal antibodies targeting CD137. Clin Pharmacol. 2013;5:47–53.
-
(2013)
Clin Pharmacol
, vol.5
, pp. 47-53
-
-
Li, S.-Y.1
Liu, Y.2
-
94
-
-
70449091786
-
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
-
Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–112.
-
(2009)
Nature
, vol.462
, pp. 108-112
-
-
Barbie, D.A.1
Tamayo, P.2
Boehm, J.S.3
-
95
-
-
84885673911
-
Inferring tumour purity and stromal and immune cell admixture from expression data
-
Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.
-
(2013)
Nat Commun
, vol.4
, pp. 2612
-
-
Yoshihara, K.1
Shahmoradgoli, M.2
Martinez, E.3
-
96
-
-
84931426001
-
Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy
-
Angelova M, Charoentong P, Hackl H, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy. Genome Biol. 2015;16:64.
-
(2015)
Genome Biol
, vol.16
, pp. 64
-
-
Angelova, M.1
Charoentong, P.2
Hackl, H.3
-
97
-
-
38049170632
-
Inferring activity changes of transcription factors by binding association with sorted expression profiles
-
Cheng C, Yan X, Sun F, Li LM. Inferring activity changes of transcription factors by binding association with sorted expression profiles. BMC Bioinformatics. 2007;8:452.
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 452
-
-
Cheng, C.1
Yan, X.2
Sun, F.3
Li, L.M.4
-
98
-
-
84953306200
-
Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles
-
Varn FS, Andrews EH, Mullins DW, Cheng C. Integrative analysis of breast cancer reveals prognostic haematopoietic activity and patient-specific immune response profiles. Nat Commun. 2016;7:10248.
-
(2016)
Nat Commun
, vol.7
, pp. 10248
-
-
Varn, F.S.1
Andrews, E.H.2
Mullins, D.W.3
Cheng, C.4
-
99
-
-
84872023313
-
PERT: A method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions
-
Qiao W, Quon G, Csaszar E, Yu M, Morris Q, Zandstra PW. PERT: A method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions. PLoS Comput Biol. 2012;8:e1002838.
-
(2012)
PLoS Comput Biol
, vol.8
-
-
Qiao, W.1
Quon, G.2
Csaszar, E.3
Yu, M.4
Morris, Q.5
Zandstra, P.W.6
-
100
-
-
84876213240
-
DeconRNASeq: A statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data
-
Gong T, Szustakowski JD. DeconRNASeq: A statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics. 2013;29:1083–1085.
-
(2013)
Bioinformatics
, vol.29
, pp. 1083-1085
-
-
Gong, T.1
Szustakowski, J.D.2
-
101
-
-
84882727548
-
Cell Mix: A comprehensive toolbox for gene expression deconvolution
-
Gaujoux R, Seoighe C. Cell Mix: A comprehensive toolbox for gene expression deconvolution. Bioinformatics. 2013;29:2211–2212.
-
(2013)
Bioinformatics
, vol.29
, pp. 2211-2212
-
-
Gaujoux, R.1
Seoighe, C.2
-
102
-
-
84897706458
-
MMAD: Microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples
-
Liebner DA, Huang K, Parvin JD. MMAD: Microarray microdissection with analysis of differences is a computational tool for deconvoluting cell type-specific contributions from tissue samples. Bioinformatics. 2014;30:682–689.
-
(2014)
Bioinformatics
, vol.30
, pp. 682-689
-
-
Liebner, D.A.1
Huang, K.2
Parvin, J.D.3
-
103
-
-
84928927858
-
Robust enumeration of cell subsets from tissue expression profiles
-
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–457.
-
(2015)
Nat Methods
, vol.12
, pp. 453-457
-
-
Newman, A.M.1
Liu, C.L.2
Green, M.R.3
-
104
-
-
84938984463
-
The prognostic landscape of genes and infiltrating immune cells across human cancers
-
Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–945.
-
(2015)
Nat Med
, vol.21
, pp. 938-945
-
-
Gentles, A.J.1
Newman, A.M.2
Liu, C.L.3
-
105
-
-
84860637797
-
DNA methylation arrays as surrogate measures of cell mixture distribution
-
Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 86
-
-
Houseman, E.A.1
Accomando, W.P.2
Koestler, D.C.3
-
106
-
-
84880969686
-
Blood-based profiles of DNA methylation predict the underlying distribution of cell types: A validation analysis
-
Koestler DC, Christensen B, Karagas MR, et al. Blood-based profiles of DNA methylation predict the underlying distribution of cell types: A validation analysis. Epigenetics. 2013;8:816–826.
-
(2013)
Epigenetics
, vol.8
, pp. 816-826
-
-
Koestler, D.C.1
Christensen, B.2
Karagas, M.R.3
-
107
-
-
84899115256
-
Quantitative reconstruction of leukocyte subsets using DNA methylation
-
Accomando WP, Wiencke JK, Houseman EA, Nelson HH, Kelsey KT. Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol. 2014;15:R50.
-
(2014)
Genome Biol
, vol.15
, pp. R50
-
-
Accomando, W.P.1
Wiencke, J.K.2
Houseman, E.A.3
Nelson, H.H.4
Kelsey, K.T.5
-
108
-
-
84899836282
-
Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival
-
Brown SD, Warren RL, Gibb EA, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014;24:743–750.
-
(2014)
Genome Res
, vol.24
, pp. 743-750
-
-
Brown, S.D.1
Warren, R.L.2
Gibb, E.A.3
-
109
-
-
84963553379
-
Genomic correlates of immune-cell infiltrates in colorectal carcinoma
-
Giannakis M, Mu XJ, Shukla SA, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 2016;15:857–865.
-
(2016)
Cell Rep
, vol.15
, pp. 857-865
-
-
Giannakis, M.1
Mu, X.J.2
Shukla, S.A.3
-
110
-
-
77956295988
-
The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
-
McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303.
-
(2010)
Genome Res
, vol.20
, pp. 1297-1303
-
-
McKenna, A.1
Hanna, M.2
Banks, E.3
-
111
-
-
68549104404
-
The sequence alignment/map format and SAMtools
-
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079.
-
(2009)
Bioinformatics
, vol.25
, pp. 2078-2079
-
-
Li, H.1
Handsaker, B.2
Wysoker, A.3
-
112
-
-
84874025843
-
Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
-
Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–219.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 213-219
-
-
Cibulskis, K.1
Lawrence, M.S.2
Carter, S.L.3
-
113
-
-
84864153492
-
Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample pairs
-
Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: Accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics. 2012;28:1811–1817.
-
(2012)
Bioinformatics
, vol.28
, pp. 1811-1817
-
-
Saunders, C.T.1
Wong, W.S.2
Swamy, S.3
Becq, J.4
Murray, L.J.5
Cheetham, R.K.6
-
114
-
-
84863229597
-
VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing
-
Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–576.
-
(2012)
Genome Res
, vol.22
, pp. 568-576
-
-
Koboldt, D.C.1
Zhang, Q.2
Larson, D.E.3
-
115
-
-
77956534324
-
ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data
-
Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
-
(2010)
Nucleic Acids Res
, vol.38
-
-
Wang, K.1
Li, M.2
Hakonarson, H.3
-
116
-
-
84925965197
-
Oncotator: Cancer variant annotation tool
-
Ramos AH, Lichtenstein L, Gupta M, et al. Oncotator: Cancer variant annotation tool. Hum Mutat. 2015;36:E2423–E2429.
-
(2015)
Hum Mutat
, vol.36
, pp. E2423-E2429
-
-
Ramos, A.H.1
Lichtenstein, L.2
Gupta, M.3
-
117
-
-
84872769379
-
Derivation of HLA types from shotgun sequence datasets
-
Warren RL, Choe G, Freeman DJ, et al. Derivation of HLA types from shotgun sequence datasets. Genome Med. 2012;4:95.
-
(2012)
Genome Med
, vol.4
, pp. 95
-
-
Warren, R.L.1
Choe, G.2
Freeman, D.J.3
-
118
-
-
84871400212
-
HLA typing from RNA-Seq sequence reads
-
Boegel S, Lower M, Schafer M, et al. HLA typing from RNA-Seq sequence reads. Genome Med. 2012;4:102.
-
(2012)
Genome Med
, vol.4
, pp. 102
-
-
Boegel, S.1
Lower, M.2
Schafer, M.3
-
119
-
-
84879547558
-
HLA typing from RNA-seq data using hierarchical read weighting [corrected]
-
Kim HJ, Pourmand N. HLA typing from RNA-seq data using hierarchical read weighting [corrected]. PLoS ONE. 2013;8:e67885.
-
(2013)
PLoS ONE
, vol.8
-
-
Kim, H.J.1
Pourmand, N.2
-
120
-
-
84899920375
-
Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads
-
Bai Y, Ni M, Cooper B, Wei Y, Fury W. Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads. BMC Genom. 2014;15:325.
-
(2014)
BMC Genom
, vol.15
, pp. 325
-
-
Bai, Y.1
Ni, M.2
Cooper, B.3
Wei, Y.4
Fury, W.5
-
121
-
-
84946565788
-
Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes
-
Shukla SA, Rooney MS, Rajasagi M, et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol. 2015;33:1152–1158.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 1152-1158
-
-
Shukla, S.A.1
Rooney, M.S.2
Rajasagi, M.3
-
122
-
-
84925550130
-
OptiType: Precision HLA typing from next-generation sequencing data
-
Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: Precision HLA typing from next-generation sequencing data. Bioinformatics. 2014;30:3310–3316.
-
(2014)
Bioinformatics
, vol.30
, pp. 3310-3316
-
-
Szolek, A.1
Schubert, B.2
Mohr, C.3
Sturm, M.4
Feldhahn, M.5
Kohlbacher, O.6
-
123
-
-
39549084433
-
NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence
-
Nielsen M, Lundegaard C, Blicher T, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE. 2007;2:e796.
-
(2007)
PLoS ONE
, vol.2
-
-
Nielsen, M.1
Lundegaard, C.2
Blicher, T.3
-
124
-
-
84957108846
-
pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens
-
Hundal J, Carreno BM, Petti AA, et al. pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 2016;8:11.
-
(2016)
Genome Med
, vol.8
, pp. 11
-
-
Hundal, J.1
Carreno, B.M.2
Petti, A.A.3
-
125
-
-
84943516465
-
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
-
Van Allen EM, Miao D, Schilling B, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350:207–211.
-
(2015)
Science
, vol.350
, pp. 207-211
-
-
Van Allen, E.M.1
Miao, D.2
Schilling, B.3
-
126
-
-
84928761118
-
Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer
-
Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128.
-
(2015)
Science
, vol.348
, pp. 124-128
-
-
Rizvi, N.A.1
Hellmann, M.D.2
Snyder, A.3
-
127
-
-
84961221351
-
Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
-
Hugo W, Zaretsky JM, Sun L, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.
-
(2016)
Cell
, vol.165
, pp. 35-44
-
-
Hugo, W.1
Zaretsky, J.M.2
Sun, L.3
-
128
-
-
84962301577
-
Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade
-
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–1469.
-
(2016)
Science
, vol.351
, pp. 1463-1469
-
-
McGranahan, N.1
Furness, A.J.2
Rosenthal, R.3
|