메뉴 건너뛰기




Volumn 591, Issue 8, 2017, Pages 1101-1113

RecG controls DNA amplification at double-strand breaks and arrested replication forks

Author keywords

DNA amplification; double strand break repair; RecG

Indexed keywords

RECG HELICASE; RUVABC; UNCLASSIFIED DRUG; BACTERIAL PROTEIN; DEOXYRIBONUCLEASE; DNA HELICASE; ESCHERICHIA COLI PROTEIN; HOLLIDAY JUNCTION DNA HELICASE, E COLI; RECG PROTEIN, E COLI; RUVB PROTEIN, BACTERIA; RUVC PROTEIN, E COLI;

EID: 85014274244     PISSN: 00145793     EISSN: 18733468     Source Type: Journal    
DOI: 10.1002/1873-3468.12583     Document Type: Review
Times cited : (15)

References (113)
  • 1
    • 0026009412 scopus 로고
    • Conjugational recombination in resolvase-deficient ruvC mutants of Escherichia coli K-12 depends on recG
    • Lloyd RG (1991) Conjugational recombination in resolvase-deficient ruvC mutants of Escherichia coli K-12 depends on recG. J Bacteriol 173, 5414–5418.
    • (1991) J Bacteriol , vol.173 , pp. 5414-5418
    • Lloyd, R.G.1
  • 2
    • 0027212716 scopus 로고
    • Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli
    • Lloyd RG and Sharples GJ (1993) Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Res 21, 1719–1725.
    • (1993) Nucleic Acids Res , vol.21 , pp. 1719-1725
    • Lloyd, R.G.1    Sharples, G.J.2
  • 3
    • 0027397630 scopus 로고
    • Dissociation of synthetic Holliday junctions by E. coli RecG protein
    • Lloyd RG and Sharples GJ (1993) Dissociation of synthetic Holliday junctions by E. coli RecG protein. EMBO J 12, 17–22.
    • (1993) EMBO J , vol.12 , pp. 17-22
    • Lloyd, R.G.1    Sharples, G.J.2
  • 4
    • 0027236687 scopus 로고
    • Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations
    • Mandal TN, Mahdi AA, Sharples GJ and Lloyd RG (1993) Resolution of Holliday intermediates in recombination and DNA repair: indirect suppression of ruvA, ruvB, and ruvC mutations. J Bacteriol 175, 4325–4334.
    • (1993) J Bacteriol , vol.175 , pp. 4325-4334
    • Mandal, T.N.1    Mahdi, A.A.2    Sharples, G.J.3    Lloyd, R.G.4
  • 5
    • 1942488150 scopus 로고    scopus 로고
    • RecG helicase promotes DNA double-strand break repair
    • Meddows TR, Savory AP and Lloyd RG (2004) RecG helicase promotes DNA double-strand break repair. Mol Microbiol 52, 119–132.
    • (2004) Mol Microbiol , vol.52 , pp. 119-132
    • Meddows, T.R.1    Savory, A.P.2    Lloyd, R.G.3
  • 6
    • 68449088790 scopus 로고    scopus 로고
    • Resolution of joint molecules by RuvABC and RecG following cleavage of the Escherichia coli chromosome by EcoKI
    • Wardrope L, Okely E and Leach D (2009) Resolution of joint molecules by RuvABC and RecG following cleavage of the Escherichia coli chromosome by EcoKI. PLoS One 4, e6542.
    • (2009) PLoS One , vol.4
    • Wardrope, L.1    Okely, E.2    Leach, D.3
  • 7
    • 0029072794 scopus 로고
    • Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3′-tailed duplex DNA
    • Whitby MC and Lloyd RG (1995) Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3′-tailed duplex DNA. EMBO J 14, 3302–3310.
    • (1995) EMBO J , vol.14 , pp. 3302-3310
    • Whitby, M.C.1    Lloyd, R.G.2
  • 8
    • 0027438781 scopus 로고
    • Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair
    • Whitby MC, Ryder L and Lloyd RG (1993) Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 75, 341–350.
    • (1993) Cell , vol.75 , pp. 341-350
    • Whitby, M.C.1    Ryder, L.2    Lloyd, R.G.3
  • 9
    • 84884193802 scopus 로고    scopus 로고
    • Characterization of the ATPase activity of RecG and RuvAB proteins on model fork structures reveals insight into stalled DNA replication fork repair
    • Abd Wahab S, Choi M and Bianco PR (2013) Characterization of the ATPase activity of RecG and RuvAB proteins on model fork structures reveals insight into stalled DNA replication fork repair. J Biol Chem 288, 26397–26409.
    • (2013) J Biol Chem , vol.288 , pp. 26397-26409
    • Abd Wahab, S.1    Choi, M.2    Bianco, P.R.3
  • 10
    • 58749113648 scopus 로고    scopus 로고
    • RecG interacts directly with SSB: implications for stalled replication fork regression
    • Buss JA, Kimura Y and Bianco PR (2008) RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res 36, 7029–7042.
    • (2008) Nucleic Acids Res , vol.36 , pp. 7029-7042
    • Buss, J.A.1    Kimura, Y.2    Bianco, P.R.3
  • 11
    • 84907855210 scopus 로고    scopus 로고
    • Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially
    • Gupta S, Yeeles JT and Marians KJ (2014) Regression of replication forks stalled by leading-strand template damage: I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the holliday junctions formed by RecG preferentially. J Biol Chem 289, 28376–28387.
    • (2014) J Biol Chem , vol.289 , pp. 28376-28387
    • Gupta, S.1    Yeeles, J.T.2    Marians, K.J.3
  • 12
    • 84893419846 scopus 로고    scopus 로고
    • RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue
    • Manosas M, Perumal SK, Bianco P, Ritort F, Benkovic SJ and Croquette V (2013) RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue. Nat Commun 4, 2368.
    • (2013) Nat Commun , vol.4 , pp. 2368
    • Manosas, M.1    Perumal, S.K.2    Bianco, P.3    Ritort, F.4    Benkovic, S.J.5    Croquette, V.6
  • 13
    • 0033178272 scopus 로고    scopus 로고
    • RecG helicase activity at three- and four-strand DNA structures
    • McGlynn P and Lloyd RG (1999) RecG helicase activity at three- and four-strand DNA structures. Nucleic Acids Res 27, 3049–3056.
    • (1999) Nucleic Acids Res , vol.27 , pp. 3049-3056
    • McGlynn, P.1    Lloyd, R.G.2
  • 14
    • 0034737294 scopus 로고    scopus 로고
    • Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression
    • McGlynn P and Lloyd RG (2000) Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101, 35–45.
    • (2000) Cell , vol.101 , pp. 35-45
    • McGlynn, P.1    Lloyd, R.G.2
  • 15
    • 0035902591 scopus 로고    scopus 로고
    • Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation
    • McGlynn P and Lloyd RG (2001) Rescue of stalled replication forks by RecG: simultaneous translocation on the leading and lagging strand templates supports an active DNA unwinding model of fork reversal and Holliday junction formation. Proc Natl Acad Sci USA 98, 8227–8234.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8227-8234
    • McGlynn, P.1    Lloyd, R.G.2
  • 16
    • 84926227384 scopus 로고    scopus 로고
    • Branch migration prevents DNA loss during double-strand break repair
    • Mawer JS and Leach DR (2014) Branch migration prevents DNA loss during double-strand break repair. PLoS Genet 10, e1004485.
    • (2014) PLoS Genet , vol.10
    • Mawer, J.S.1    Leach, D.R.2
  • 18
    • 78951475725 scopus 로고    scopus 로고
    • RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli
    • Rudolph CJ, Mahdi AA, Upton AL and Lloyd RG (2010) RecG protein and single-strand DNA exonucleases avoid cell lethality associated with PriA helicase activity in Escherichia coli. Genetics 186, 473–492.
    • (2010) Genetics , vol.186 , pp. 473-492
    • Rudolph, C.J.1    Mahdi, A.A.2    Upton, A.L.3    Lloyd, R.G.4
  • 20
    • 67651205866 scopus 로고    scopus 로고
    • Pathological replication in cells lacking RecG DNA translocase
    • Rudolph CJ, Upton AL, Harris L and Lloyd RG (2009) Pathological replication in cells lacking RecG DNA translocase. Mol Microbiol 73, 352–366.
    • (2009) Mol Microbiol , vol.73 , pp. 352-366
    • Rudolph, C.J.1    Upton, A.L.2    Harris, L.3    Lloyd, R.G.4
  • 21
    • 70449560624 scopus 로고    scopus 로고
    • Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase
    • Rudolph CJ, Upton AL and Lloyd RG (2009) Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase. Mol Microbiol 74, 940–955.
    • (2009) Mol Microbiol , vol.74 , pp. 940-955
    • Rudolph, C.J.1    Upton, A.L.2    Lloyd, R.G.3
  • 24
    • 84961999119 scopus 로고    scopus 로고
    • 25 years on and no end in sight: a perspective on the role of RecG protein
    • Lloyd RG and Rudolph CJ (2016) 25 years on and no end in sight: a perspective on the role of RecG protein. Curr Genet 62, 827–840.
    • (2016) Curr Genet , vol.62 , pp. 827-840
    • Lloyd, R.G.1    Rudolph, C.J.2
  • 25
    • 84924388040 scopus 로고    scopus 로고
    • End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria
    • Gowrishankar J (2015) End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genet 11, e1004909.
    • (2015) PLoS Genet , vol.11
    • Gowrishankar, J.1
  • 26
    • 84970984053 scopus 로고    scopus 로고
    • Irc3 is a mitochondrial DNA branch migration enzyme
    • Gaidutsik I, Sedman T, Sillamaa S and Sedman J (2016) Irc3 is a mitochondrial DNA branch migration enzyme. Sci Rep 6, 26414.
    • (2016) Sci Rep , vol.6 , pp. 26414
    • Gaidutsik, I.1    Sedman, T.2    Sillamaa, S.3    Sedman, J.4
  • 27
    • 84926208167 scopus 로고    scopus 로고
    • RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats
    • Odahara M, Masuda Y, Sato M, Wakazaki M, Harada C, Toyooka K and Sekine Y (2015) RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats. PLoS Genet 11, e1005080.
    • (2015) PLoS Genet , vol.11
    • Odahara, M.1    Masuda, Y.2    Sato, M.3    Wakazaki, M.4    Harada, C.5    Toyooka, K.6    Sekine, Y.7
  • 28
    • 84946732498 scopus 로고    scopus 로고
    • The RECG1 DNA translocase is a key factor in recombination surveillance, repair, and segregation of the mitochondrial DNA in Arabidopsis
    • Wallet C, Le Ret M, Bergdoll M, Bichara M, Dietrich A and Gualberto JM (2015) The RECG1 DNA translocase is a key factor in recombination surveillance, repair, and segregation of the mitochondrial DNA in Arabidopsis. Plant Cell 27, 2907–2925.
    • (2015) Plant Cell , vol.27 , pp. 2907-2925
    • Wallet, C.1    Le Ret, M.2    Bergdoll, M.3    Bichara, M.4    Dietrich, A.5    Gualberto, J.M.6
  • 29
    • 84879796452 scopus 로고    scopus 로고
    • Substrate-selective repair and restart of replication forks by DNA translocases
    • Betous R, Couch FB, Mason AC, Eichman BF, Manosas M and Cortez D (2013) Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep 3, 1958–1969.
    • (2013) Cell Rep , vol.3 , pp. 1958-1969
    • Betous, R.1    Couch, F.B.2    Mason, A.C.3    Eichman, B.F.4    Manosas, M.5    Cortez, D.6
  • 30
    • 70350111290 scopus 로고    scopus 로고
    • The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    • Bansbach CE, Betous R, Lovejoy CA, Glick GG and Cortez D (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23, 2405–2414.
    • (2009) Genes Dev , vol.23 , pp. 2405-2414
    • Bansbach, C.E.1    Betous, R.2    Lovejoy, C.A.3    Glick, G.G.4    Cortez, D.5
  • 31
    • 72149132821 scopus 로고    scopus 로고
    • Identification of SMARCAL1 as a component of the DNA damage response
    • Postow L, Woo EM, Chait BT and Funabiki H (2009) Identification of SMARCAL1 as a component of the DNA damage response. J Biol Chem 284, 35951–35961.
    • (2009) J Biol Chem , vol.284 , pp. 35951-35961
    • Postow, L.1    Woo, E.M.2    Chait, B.T.3    Funabiki, H.4
  • 34
    • 84879794753 scopus 로고    scopus 로고
    • Schimke immunoosseous dysplasia associated with undifferentiated carcinoma and a novel SMARCAL1 mutation in a child
    • Carroll C, Badu-Nkansah A, Hunley T, Baradaran-Heravi A, Cortez D and Frangoul H (2013) Schimke immunoosseous dysplasia associated with undifferentiated carcinoma and a novel SMARCAL1 mutation in a child. Pediatr Blood Cancer 60, E88–E90.
    • (2013) Pediatr Blood Cancer , vol.60 , pp. E88-E90
    • Carroll, C.1    Badu-Nkansah, A.2    Hunley, T.3    Baradaran-Heravi, A.4    Cortez, D.5    Frangoul, H.6
  • 35
    • 84962560714 scopus 로고    scopus 로고
    • SMARCAL1 resolves replication stress at ALT telomeres
    • Cox KE, Marechal A and Flynn RL (2016) SMARCAL1 resolves replication stress at ALT telomeres. Cell Rep 14, 1032–1040.
    • (2016) Cell Rep , vol.14 , pp. 1032-1040
    • Cox, K.E.1    Marechal, A.2    Flynn, R.L.3
  • 36
    • 84978665360 scopus 로고    scopus 로고
    • SMARCAL1 and telomeres: replicating the troublesome ends
    • Poole LA and Cortez D (2016) SMARCAL1 and telomeres: replicating the troublesome ends. Nucleus 7, 270–274.
    • (2016) Nucleus , vol.7 , pp. 270-274
    • Poole, L.A.1    Cortez, D.2
  • 38
    • 84938952129 scopus 로고    scopus 로고
    • I came to a fork in the DNA and there was RecG
    • Bianco PR (2015) I came to a fork in the DNA and there was RecG. Prog Biophys Mol Biol 117, 166–173.
    • (2015) Prog Biophys Mol Biol , vol.117 , pp. 166-173
    • Bianco, P.R.1
  • 39
    • 84980340118 scopus 로고    scopus 로고
    • Replication termination: containing fork fusion-mediated pathologies in Escherichia coli
    • Dimude JU, Midgley-Smith SL, Stein M and Rudolph CJ (2016) Replication termination: containing fork fusion-mediated pathologies in Escherichia coli. Genes (Basel) 7, 7080040.
    • (2016) Genes (Basel) , vol.7 , pp. 7080040
    • Dimude, J.U.1    Midgley-Smith, S.L.2    Stein, M.3    Rudolph, C.J.4
  • 41
    • 0021063273 scopus 로고
    • Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour
    • Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop JM, Gilbert F, Brodeur G, Goldstein M and Trent J (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305, 245–248.
    • (1983) Nature , vol.305 , pp. 245-248
    • Schwab, M.1    Alitalo, K.2    Klempnauer, K.H.3    Varmus, H.E.4    Bishop, J.M.5    Gilbert, F.6    Brodeur, G.7    Goldstein, M.8    Trent, J.9
  • 43
    • 37049183697 scopus 로고
    • Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene
    • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A and McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235, 177–182.
    • (1987) Science , vol.235 , pp. 177-182
    • Slamon, D.J.1    Clark, G.M.2    Wong, S.G.3    Levin, W.J.4    Ullrich, A.5    McGuire, W.L.6
  • 44
    • 67651204792 scopus 로고    scopus 로고
    • Bacterial gene amplification: implications for the evolution of antibiotic resistance
    • Sandegren L and Andersson DI (2009) Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7, 578–588.
    • (2009) Nat Rev Microbiol , vol.7 , pp. 578-588
    • Sandegren, L.1    Andersson, D.I.2
  • 45
    • 0020604325 scopus 로고
    • Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea
    • Brown PC, Tlsty TD and Schimke RT (1983) Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea. Mol Cell Biol 3, 1097–1107.
    • (1983) Mol Cell Biol , vol.3 , pp. 1097-1107
    • Brown, P.C.1    Tlsty, T.D.2    Schimke, R.T.3
  • 46
    • 0030904279 scopus 로고    scopus 로고
    • Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons
    • Coquelle A, Pipiras E, Toledo F, Buttin G and Debatisse M (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89, 215–225.
    • (1997) Cell , vol.89 , pp. 215-225
    • Coquelle, A.1    Pipiras, E.2    Toledo, F.3    Buttin, G.4    Debatisse, M.5
  • 47
    • 33947257997 scopus 로고    scopus 로고
    • Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer
    • Tanaka H, Cao Y, Bergstrom DA, Kooperberg C, Tapscott SJ and Yao MC (2007) Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer. Mol Cell Biol 27, 1993–2002.
    • (2007) Mol Cell Biol , vol.27 , pp. 1993-2002
    • Tanaka, H.1    Cao, Y.2    Bergstrom, D.A.3    Kooperberg, C.4    Tapscott, S.J.5    Yao, M.C.6
  • 48
    • 0037173105 scopus 로고    scopus 로고
    • Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells
    • Tanaka H, Tapscott SJ, Trask BJ and Yao MC (2002) Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells. Proc Natl Acad Sci USA 99, 8772–8777.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 8772-8777
    • Tanaka, H.1    Tapscott, S.J.2    Trask, B.J.3    Yao, M.C.4
  • 49
    • 0021205716 scopus 로고
    • UV radiation facilitates methotrexate resistance and amplification of the dihydrofolate reductase gene in cultured 3T6 mouse cells
    • Tlsty TD, Brown PC and Schimke RT (1984) UV radiation facilitates methotrexate resistance and amplification of the dihydrofolate reductase gene in cultured 3T6 mouse cells. Mol Cell Biol 4, 1050–1056.
    • (1984) Mol Cell Biol , vol.4 , pp. 1050-1056
    • Tlsty, T.D.1    Brown, P.C.2    Schimke, R.T.3
  • 52
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis TD, Gorgoulis VG and Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319, 1352–1355.
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 54
    • 84891301320 scopus 로고    scopus 로고
    • Causes and consequences of replication stress
    • Zeman MK and Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16, 2–9.
    • (2014) Nat Cell Biol , vol.16 , pp. 2-9
    • Zeman, M.K.1    Cimprich, K.A.2
  • 55
    • 0017298802 scopus 로고
    • A model for replication repair in mammalian cells
    • Higgins NP, Kato K and Strauss B (1976) A model for replication repair in mammalian cells. J Mol Biol 101, 417–425.
    • (1976) J Mol Biol , vol.101 , pp. 417-425
    • Higgins, N.P.1    Kato, K.2    Strauss, B.3
  • 57
    • 0017109724 scopus 로고
    • Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms
    • Fujiwara Y and Tatsumi M (1976) Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: caffeine sensitive and caffeine resistant mechanisms. Mutat Res 37, 91–110.
    • (1976) Mutat Res , vol.37 , pp. 91-110
    • Fujiwara, Y.1    Tatsumi, M.2
  • 58
    • 0035902585 scopus 로고    scopus 로고
    • Single-strand interruptions in replicating chromosomes cause double-strand breaks
    • Kuzminov A (2001) Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA 98, 8241–8246.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8241-8246
    • Kuzminov, A.1
  • 59
    • 0037099681 scopus 로고    scopus 로고
    • Replication fork collapse at replication terminator sequences
    • Bidnenko V, Ehrlich SD and Michel B (2002) Replication fork collapse at replication terminator sequences. EMBO J 21, 3898–3907.
    • (2002) EMBO J , vol.21 , pp. 3898-3907
    • Bidnenko, V.1    Ehrlich, S.D.2    Michel, B.3
  • 60
    • 40649101678 scopus 로고    scopus 로고
    • SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome
    • Eykelenboom JK, Blackwood JK, Okely E and Leach DR (2008) SbcCD causes a double-strand break at a DNA palindrome in the Escherichia coli chromosome. Mol Cell 29, 644–651.
    • (2008) Mol Cell , vol.29 , pp. 644-651
    • Eykelenboom, J.K.1    Blackwood, J.K.2    Okely, E.3    Leach, D.R.4
  • 61
    • 0028674914 scopus 로고
    • Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair
    • Leach DR (1994) Long DNA palindromes, cruciform structures, genetic instability and secondary structure repair. BioEssays 16, 893–900.
    • (1994) BioEssays , vol.16 , pp. 893-900
    • Leach, D.R.1
  • 62
    • 0015124414 scopus 로고
    • Genetic recombination in Escherichia coli. IV. Isolation and characterization of recombination-deficiency mutants of Escherichia coli K12
    • Storm PK, Hoekstra WP, de Haan PG and Verhoef C (1971) Genetic recombination in Escherichia coli. IV. Isolation and characterization of recombination-deficiency mutants of Escherichia coli K12. Mutat Res 13, 9–17.
    • (1971) Mutat Res , vol.13 , pp. 9-17
    • Storm, P.K.1    Hoekstra, W.P.2    de Haan, P.G.3    Verhoef, C.4
  • 63
    • 0025924538 scopus 로고
    • Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair
    • Lloyd RG and Buckman C (1991) Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair. J Bacteriol 173, 1004–1011.
    • (1991) J Bacteriol , vol.173 , pp. 1004-1011
    • Lloyd, R.G.1    Buckman, C.2
  • 64
    • 0031028107 scopus 로고    scopus 로고
    • ATP-dependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase
    • Fukuoh A, Iwasaki H, Ishioka K and Shinagawa H (1997) ATP-dependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase. EMBO J 16, 203–209.
    • (1997) EMBO J , vol.16 , pp. 203-209
    • Fukuoh, A.1    Iwasaki, H.2    Ishioka, K.3    Shinagawa, H.4
  • 65
    • 84865641240 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions
    • Zegeye ED, Balasingham SV, Laerdahl JK, Homberset H and Tonjum T (2012) Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions. Microbiology 158, 1982–1993.
    • (2012) Microbiology , vol.158 , pp. 1982-1993
    • Zegeye, E.D.1    Balasingham, S.V.2    Laerdahl, J.K.3    Homberset, H.4    Tonjum, T.5
  • 66
    • 84943226685 scopus 로고    scopus 로고
    • Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria
    • Thakur RS, Basavaraju S, Khanduja JS, Muniyappa K and Nagaraju G (2015) Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. J Biol Chem 290, 24119–24139.
    • (2015) J Biol Chem , vol.290 , pp. 24119-24139
    • Thakur, R.S.1    Basavaraju, S.2    Khanduja, J.S.3    Muniyappa, K.4    Nagaraju, G.5
  • 67
    • 84876294656 scopus 로고    scopus 로고
    • Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination
    • Thakur RS, Basavaraju S, Somyajit K, Jain A, Subramanya S, Muniyappa K and Nagaraju G (2013) Evidence for the role of Mycobacterium tuberculosis RecG helicase in DNA repair and recombination. FEBS J 280, 1841–1860.
    • (2013) FEBS J , vol.280 , pp. 1841-1860
    • Thakur, R.S.1    Basavaraju, S.2    Somyajit, K.3    Jain, A.4    Subramanya, S.5    Muniyappa, K.6    Nagaraju, G.7
  • 69
    • 0034659679 scopus 로고    scopus 로고
    • Characterisation of the catalytically active form of RecG helicase
    • McGlynn P, Mahdi AA and Lloyd RG (2000) Characterisation of the catalytically active form of RecG helicase. Nucleic Acids Res 28, 2324–2332.
    • (2000) Nucleic Acids Res , vol.28 , pp. 2324-2332
    • McGlynn, P.1    Mahdi, A.A.2    Lloyd, R.G.3
  • 70
    • 0035812836 scopus 로고    scopus 로고
    • Structural analysis of DNA replication fork reversal by RecG
    • Singleton MR, Scaife S and Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell 107, 79–89.
    • (2001) Cell , vol.107 , pp. 79-89
    • Singleton, M.R.1    Scaife, S.2    Wigley, D.B.3
  • 71
    • 0035902573 scopus 로고    scopus 로고
    • Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled
    • McGlynn P, Lloyd RG and Marians KJ (2001) Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci USA 98, 8235–8240.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 8235-8240
    • McGlynn, P.1    Lloyd, R.G.2    Marians, K.J.3
  • 72
    • 0036348154 scopus 로고    scopus 로고
    • Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo
    • Bolt EL and Lloyd RG (2002) Substrate specificity of RusA resolvase reveals the DNA structures targeted by RuvAB and RecG in vivo. Mol Cell 10, 187–198.
    • (2002) Mol Cell , vol.10 , pp. 187-198
    • Bolt, E.L.1    Lloyd, R.G.2
  • 73
    • 0036683338 scopus 로고    scopus 로고
    • Genome stability and the processing of damaged replication forks by RecG
    • McGlynn P and Lloyd RG (2002) Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18, 413–419.
    • (2002) Trends Genet , vol.18 , pp. 413-419
    • McGlynn, P.1    Lloyd, R.G.2
  • 74
    • 0036184234 scopus 로고    scopus 로고
    • Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities
    • Gregg AV, McGlynn P, Jaktaji RP and Lloyd RG (2002) Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell 9, 241–251.
    • (2002) Mol Cell , vol.9 , pp. 241-251
    • Gregg, A.V.1    McGlynn, P.2    Jaktaji, R.P.3    Lloyd, R.G.4
  • 75
    • 1642524465 scopus 로고    scopus 로고
    • Situational repair of replication forks: roles of RecG and RecA proteins
    • Robu ME, Inman RB and Cox MM (2004) Situational repair of replication forks: roles of RecG and RecA proteins. J Biol Chem 279, 10973–10981.
    • (2004) J Biol Chem , vol.279 , pp. 10973-10981
    • Robu, M.E.1    Inman, R.B.2    Cox, M.M.3
  • 76
    • 1642484213 scopus 로고    scopus 로고
    • Interplay between DNA replication, recombination and repair based on the structure of RecG helicase
    • Briggs GS, Mahdi AA, Weller GR, Wen Q and Lloyd RG (2004) Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philos Trans R Soc Lond B Biol Sci 359, 49–59.
    • (2004) Philos Trans R Soc Lond B Biol Sci , vol.359 , pp. 49-59
    • Briggs, G.S.1    Mahdi, A.A.2    Weller, G.R.3    Wen, Q.4    Lloyd, R.G.5
  • 77
    • 77950558983 scopus 로고    scopus 로고
    • Interfacial instability and DNA fork reversal by repair proteins
    • Bhattacharjee SM (2010) Interfacial instability and DNA fork reversal by repair proteins. J Phys Condens Matter 22, 155102.
    • (2010) J Phys Condens Matter , vol.22 , pp. 155102
    • Bhattacharjee, S.M.1
  • 78
    • 0037415719 scopus 로고    scopus 로고
    • A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins
    • Mahdi AA, Briggs GS, Sharples GJ, Wen Q and Lloyd RG (2003) A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO J 22, 724–734.
    • (2003) EMBO J , vol.22 , pp. 724-734
    • Mahdi, A.A.1    Briggs, G.S.2    Sharples, G.J.3    Wen, Q.4    Lloyd, R.G.5
  • 79
    • 32544441919 scopus 로고    scopus 로고
    • RuvAB is essential for replication forks reversal in certain replication mutants
    • Baharoglu Z, Petranovic M, Flores MJ and Michel B (2006) RuvAB is essential for replication forks reversal in certain replication mutants. EMBO J 25, 596–604.
    • (2006) EMBO J , vol.25 , pp. 596-604
    • Baharoglu, Z.1    Petranovic, M.2    Flores, M.J.3    Michel, B.4
  • 80
    • 84860578766 scopus 로고    scopus 로고
    • Replication fork reversal after replication-transcription collision
    • De Septenville AL, Duigou S, Boubakri H and Michel B (2012) Replication fork reversal after replication-transcription collision. PLoS Genet 8, e1002622.
    • (2012) PLoS Genet , vol.8
    • De Septenville, A.L.1    Duigou, S.2    Boubakri, H.3    Michel, B.4
  • 81
    • 0035254234 scopus 로고    scopus 로고
    • Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks
    • Flores MJ, Bierne H, Ehrlich SD and Michel B (2001) Impairment of lagging strand synthesis triggers the formation of a RuvABC substrate at replication forks. EMBO J 20, 619–629.
    • (2001) EMBO J , vol.20 , pp. 619-629
    • Flores, M.J.1    Bierne, H.2    Ehrlich, S.D.3    Michel, B.4
  • 82
    • 4344695035 scopus 로고    scopus 로고
    • Cells defective for replication restart undergo replication fork reversal
    • Grompone G, Ehrlich D and Michel B (2004) Cells defective for replication restart undergo replication fork reversal. EMBO Rep 5, 607–612.
    • (2004) EMBO Rep , vol.5 , pp. 607-612
    • Grompone, G.1    Ehrlich, D.2    Michel, B.3
  • 83
    • 0036015646 scopus 로고    scopus 로고
    • Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp
    • Grompone G, Seigneur M, Ehrlich SD and Michel B (2002) Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol Microbiol 44, 1331–1339.
    • (2002) Mol Microbiol , vol.44 , pp. 1331-1339
    • Grompone, G.1    Seigneur, M.2    Ehrlich, S.D.3    Michel, B.4
  • 85
    • 84857497122 scopus 로고    scopus 로고
    • Replication forks stalled at ultraviolet lesions are rescued via RecA and RuvABC protein-catalyzed disintegration in Escherichia coli
    • Khan SR and Kuzminov A (2012) Replication forks stalled at ultraviolet lesions are rescued via RecA and RuvABC protein-catalyzed disintegration in Escherichia coli. J Biol Chem 287, 6250–6265.
    • (2012) J Biol Chem , vol.287 , pp. 6250-6265
    • Khan, S.R.1    Kuzminov, A.2
  • 86
    • 33645636759 scopus 로고    scopus 로고
    • Stabilization of a stalled replication fork by concerted actions of two helicases
    • Tanaka T and Masai H (2006) Stabilization of a stalled replication fork by concerted actions of two helicases. J Biol Chem 281, 3484–3493.
    • (2006) J Biol Chem , vol.281 , pp. 3484-3493
    • Tanaka, T.1    Masai, H.2
  • 87
    • 0031453378 scopus 로고    scopus 로고
    • Processing of recombination intermediates by the RuvABC proteins
    • West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31, 213–244.
    • (1997) Annu Rev Genet , vol.31 , pp. 213-244
    • West, S.C.1
  • 88
    • 0023391330 scopus 로고
    • Tests of the double-strand-break repair model for red-mediated recombination of phage lambda and plasmid lambda dv
    • Thaler DS, Stahl MM and Stahl FW (1987) Tests of the double-strand-break repair model for red-mediated recombination of phage lambda and plasmid lambda dv. Genetics 116, 501–511.
    • (1987) Genetics , vol.116 , pp. 501-511
    • Thaler, D.S.1    Stahl, M.M.2    Stahl, F.W.3
  • 90
    • 0029850005 scopus 로고    scopus 로고
    • Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12
    • Al-Deib AA, Mahdi AA and Lloyd RG (1996) Modulation of recombination and DNA repair by the RecG and PriA helicases of Escherichia coli K-12. J Bacteriol 178, 6782–6789.
    • (1996) J Bacteriol , vol.178 , pp. 6782-6789
    • Al-Deib, A.A.1    Mahdi, A.A.2    Lloyd, R.G.3
  • 91
    • 77954833871 scopus 로고    scopus 로고
    • Stalled replication forks: making ends meet for recognition and stabilization
    • Masai H, Tanaka T and Kohda D (2010) Stalled replication forks: making ends meet for recognition and stabilization. BioEssays 32, 687–697.
    • (2010) BioEssays , vol.32 , pp. 687-697
    • Masai, H.1    Tanaka, T.2    Kohda, D.3
  • 92
    • 0033609892 scopus 로고    scopus 로고
    • PriA-directed assembly of a primosome on D loop DNA
    • Liu J and Marians KJ (1999) PriA-directed assembly of a primosome on D loop DNA. J Biol Chem 274, 25033–25041.
    • (1999) J Biol Chem , vol.274 , pp. 25033-25041
    • Liu, J.1    Marians, K.J.2
  • 93
    • 0032605883 scopus 로고    scopus 로고
    • PriA: at the crossroads of DNA replication and recombination
    • Marians KJ (1999) PriA: at the crossroads of DNA replication and recombination. Prog Nucleic Acid Res Mol Biol 63, 39–67.
    • (1999) Prog Nucleic Acid Res Mol Biol , vol.63 , pp. 39-67
    • Marians, K.J.1
  • 94
    • 84928412169 scopus 로고    scopus 로고
    • Structural insight into the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT
    • Huang YH and Huang CY (2014) Structural insight into the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT. Biomed Res Int 2014, 195162.
    • (2014) Biomed Res Int , vol.2014 , pp. 195162
    • Huang, Y.H.1    Huang, C.Y.2
  • 95
    • 34547126932 scopus 로고    scopus 로고
    • Escherichia coli PriA protein, two modes of DNA binding and activation of ATP hydrolysis
    • Tanaka T, Mizukoshi T, Sasaki K, Kohda D and Masai H (2007) Escherichia coli PriA protein, two modes of DNA binding and activation of ATP hydrolysis. J Biol Chem 282, 19917–19927.
    • (2007) J Biol Chem , vol.282 , pp. 19917-19927
    • Tanaka, T.1    Mizukoshi, T.2    Sasaki, K.3    Kohda, D.4    Masai, H.5
  • 96
    • 0029960337 scopus 로고    scopus 로고
    • Differential suppression of priA2:kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC
    • Sandler SJ, Samra HS and Clark AJ (1996) Differential suppression of priA2:kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143, 5–13.
    • (1996) Genetics , vol.143 , pp. 5-13
    • Sandler, S.J.1    Samra, H.S.2    Clark, A.J.3
  • 97
    • 0029026201 scopus 로고
    • Escherichia coli RecG and RecA proteins in R-loop formation
    • Hong X, Cadwell GW and Kogoma T (1995) Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J 14, 2385–2392.
    • (1995) EMBO J , vol.14 , pp. 2385-2392
    • Hong, X.1    Cadwell, G.W.2    Kogoma, T.3
  • 98
    • 0014945321 scopus 로고
    • DNA replication in Escherichia coli: replication in absence of protein synthesis after replication inhibition
    • Kogoma T and Lark KG (1970) DNA replication in Escherichia coli: replication in absence of protein synthesis after replication inhibition. J Mol Biol 52, 143–164.
    • (1970) J Mol Biol , vol.52 , pp. 143-164
    • Kogoma, T.1    Lark, K.G.2
  • 99
    • 0016749685 scopus 로고
    • Characterization of the replication of Escherichia coli DNA in the absence of protein synthesis: stable DNA replication
    • Kogoma T and Lark KG (1975) Characterization of the replication of Escherichia coli DNA in the absence of protein synthesis: stable DNA replication. J Mol Biol 94, 243–256.
    • (1975) J Mol Biol , vol.94 , pp. 243-256
    • Kogoma, T.1    Lark, K.G.2
  • 100
    • 0021849717 scopus 로고
    • RecA protein acts at the initiation of stable DNA replication in rnh mutants of Escherichia coli K-12
    • Kogoma T, Skarstad K, Boye E, von Meyenburg K and Steen HB (1985) RecA protein acts at the initiation of stable DNA replication in rnh mutants of Escherichia coli K-12. J Bacteriol 163, 439–444.
    • (1985) J Bacteriol , vol.163 , pp. 439-444
    • Kogoma, T.1    Skarstad, K.2    Boye, E.3    von Meyenburg, K.4    Steen, H.B.5
  • 101
    • 0020417241 scopus 로고
    • Suppressor mutations (rin) that specifically suppress the recA+ dependence of stable DNA replication in Escherichia coli K-12
    • Torrey TA and Kogoma T (1982) Suppressor mutations (rin) that specifically suppress the recA+ dependence of stable DNA replication in Escherichia coli K-12. Mol Gen Genet 187, 225–230.
    • (1982) Mol Gen Genet , vol.187 , pp. 225-230
    • Torrey, T.A.1    Kogoma, T.2
  • 102
    • 0017865328 scopus 로고
    • A novel Escherichia coli mutant capable of DNA replication in the absence of protein synthesis
    • Kogoma T (1978) A novel Escherichia coli mutant capable of DNA replication in the absence of protein synthesis. J Mol Biol 121, 55–69.
    • (1978) J Mol Biol , vol.121 , pp. 55-69
    • Kogoma, T.1
  • 103
    • 0023258963 scopus 로고
    • Mode of initiation of constitutive stable DNA replication in RNase H-defective mutants of Escherichia coli K-12
    • von Meyenburg K, Boye E, Skarstad K, Koppes L and Kogoma T (1987) Mode of initiation of constitutive stable DNA replication in RNase H-defective mutants of Escherichia coli K-12. J Bacteriol 169, 2650–2658.
    • (1987) J Bacteriol , vol.169 , pp. 2650-2658
    • von Meyenburg, K.1    Boye, E.2    Skarstad, K.3    Koppes, L.4    Kogoma, T.5
  • 104
    • 0028023335 scopus 로고
    • Roles of ruvA, ruvC and recG gene functions in normal and DNA damage-inducible replication of the Escherichia coli chromosome
    • Asai T and Kogoma T (1994) Roles of ruvA, ruvC and recG gene functions in normal and DNA damage-inducible replication of the Escherichia coli chromosome. Genetics 137, 895–902.
    • (1994) Genetics , vol.137 , pp. 895-902
    • Asai, T.1    Kogoma, T.2
  • 105
    • 0027214724 scopus 로고
    • Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli
    • Asai T, Sommer S, Bailone A and Kogoma T (1993) Homologous recombination-dependent initiation of DNA replication from DNA damage-inducible origins in Escherichia coli. EMBO J 12, 3287–3295.
    • (1993) EMBO J , vol.12 , pp. 3287-3295
    • Asai, T.1    Sommer, S.2    Bailone, A.3    Kogoma, T.4
  • 106
    • 0018577459 scopus 로고
    • Induction of UV-resistant DNA replication in Escherichia coli: induced stable DNA replication as an SOS function
    • Kogoma T, Torrey TA and Connaughton MJ (1979) Induction of UV-resistant DNA replication in Escherichia coli: induced stable DNA replication as an SOS function. Mol Gen Genet 176, 1–9.
    • (1979) Mol Gen Genet , vol.176 , pp. 1-9
    • Kogoma, T.1    Torrey, T.A.2    Connaughton, M.J.3
  • 107
    • 0025272922 scopus 로고
    • Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli
    • Magee TR and Kogoma T (1990) Requirement of RecBC enzyme and an elevated level of activated RecA for induced stable DNA replication in Escherichia coli. J Bacteriol 172, 1834–1839.
    • (1990) J Bacteriol , vol.172 , pp. 1834-1839
    • Magee, T.R.1    Kogoma, T.2
  • 108
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription
    • Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61, 212–238.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 109
    • 57349157777 scopus 로고    scopus 로고
    • RecBCD enzyme and the repair of double-stranded DNA breaks
    • Dillingham MS and Kowalczykowski SC (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72, 642–671.
    • (2008) Microbiol Mol Biol Rev , vol.72 , pp. 642-671
    • Dillingham, M.S.1    Kowalczykowski, S.C.2
  • 110
    • 84959081250 scopus 로고    scopus 로고
    • The DNA exonucleases of Escherichia coli
    • Lovett ST (2011) The DNA exonucleases of Escherichia coli. EcoSal Plus 4.4.7, 1–30.
    • (2011) EcoSal Plus , vol.47 , Issue.4 , pp. 1-30
    • Lovett, S.T.1
  • 112
    • 0037329487 scopus 로고    scopus 로고
    • PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells
    • Jaktaji RP and Lloyd RG (2003) PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells. Mol Microbiol 47, 1091–1100.
    • (2003) Mol Microbiol , vol.47 , pp. 1091-1100
    • Jaktaji, R.P.1    Lloyd, R.G.2
  • 113
    • 84940540419 scopus 로고    scopus 로고
    • Quantitative genomic analysis of RecA protein binding during DNA double-strand break repair reveals RecBCD action in vivo
    • Cockram CA, Filatenkova M, Danos V, El Karoui M and Leach DR (2015) Quantitative genomic analysis of RecA protein binding during DNA double-strand break repair reveals RecBCD action in vivo. Proc Natl Acad Sci USA 112, E4735–E4742.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E4735-E4742
    • Cockram, C.A.1    Filatenkova, M.2    Danos, V.3    El Karoui, M.4    Leach, D.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.