메뉴 건너뛰기




Volumn 112, Issue 48, 2015, Pages 14864-14869

SMARCAL1 maintains telomere integrity during DNA replication

Author keywords

C circle; Replication stress; SMARCAL1; Telomere

Indexed keywords

CARRIER PROTEIN; DNA; DNA BINDING PROTEIN; EXTRACHROMOSOMAL DNA; HELICASE LIKE TRANSCRIPTION FACTOR; REPLICATION FACTOR A; SWI SNF RELATED MATRIX ASSOCIATED ACTIN DEPENDENT REGULATOR OF CHROMATIN SUBFAMILY A LIKE 1 DNA TRANSLOCASE; UNCLASSIFIED DRUG; ZINC FINGER RAN BINDING CONTAINING 3 PROTEIN; DNA HELICASE; SMARCAL1 PROTEIN, HUMAN; SMARCAL1 PROTEIN, MOUSE; ZRANB3 PROTEIN, HUMAN;

EID: 84948676893     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1510750112     Document Type: Article
Times cited : (67)

References (43)
  • 1
    • 33745122231 scopus 로고    scopus 로고
    • Identification of multiple distinct Snf2 subfamilies with conserved structural motifs
    • Flaus A, Martin DM, Barton GJ, Owen-Hughes T (2006) Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34(10):2887-2905.
    • (2006) Nucleic Acids Res , vol.34 , Issue.10 , pp. 2887-2905
    • Flaus, A.1    Martin, D.M.2    Barton, G.J.3    Owen-Hughes, T.4
  • 2
    • 70350111290 scopus 로고    scopus 로고
    • The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks
    • Bansbach CE, Bétous R, Lovejoy CA, Glick GG, Cortez D (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23(20): 2405-2414.
    • (2009) Genes Dev , vol.23 , Issue.20 , pp. 2405-2414
    • Bansbach, C.E.1    Bétous, R.2    Lovejoy, C.A.3    Glick, G.G.4    Cortez, D.5
  • 3
    • 84856246154 scopus 로고    scopus 로고
    • SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication
    • Bétous R, et al. (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev 26(2):151-162.
    • (2012) Genes Dev , vol.26 , Issue.2 , pp. 151-162
    • Bétous, R.1
  • 4
    • 84864946159 scopus 로고    scopus 로고
    • Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress
    • Ciccia A, et al. (2012) Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Mol Cell 47(3):396-409.
    • (2012) Mol Cell , vol.47 , Issue.3 , pp. 396-409
    • Ciccia, A.1
  • 5
    • 70350103969 scopus 로고    scopus 로고
    • The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA
    • Yusufzai T, Kong X, Yokomori K, Kadonaga JT (2009) The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev 23(20):2400-2404.
    • (2009) Genes Dev , vol.23 , Issue.20 , pp. 2400-2404
    • Yusufzai, T.1    Kong, X.2    Yokomori, K.3    Kadonaga, J.T.4
  • 6
    • 80052159311 scopus 로고    scopus 로고
    • Coordinated protein and DNA remodeling by human HLTF on stalled replication fork
    • Achar YJ, Balogh D, Haracska L (2011) Coordinated protein and DNA remodeling by human HLTF on stalled replication fork. Proc Natl Acad Sci USA 108(34):14073-14078.
    • (2011) Proc Natl Acad Sci USA , vol.108 , Issue.34 , pp. 14073-14078
    • Achar, Y.J.1    Balogh, D.2    Haracska, L.3
  • 7
    • 75149143176 scopus 로고    scopus 로고
    • Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA
    • Blastyák A, Hajdú I, Unk I, Haracska L (2010) Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 30(3):684-693.
    • (2010) Mol Cell Biol , vol.30 , Issue.3 , pp. 684-693
    • Blastyák, A.1    Hajdú, I.2    Unk, I.3    Haracska, L.4
  • 8
    • 84896730048 scopus 로고    scopus 로고
    • Strand invasion by HLTF as a mechanism for template switch in fork rescue
    • Burkovics P, Sebesta M, Balogh D, Haracska L, Krejci L (2014) Strand invasion by HLTF as a mechanism for template switch in fork rescue. Nucleic Acids Res 42(3):1711-1720.
    • (2014) Nucleic Acids Res , vol.42 , Issue.3 , pp. 1711-1720
    • Burkovics, P.1    Sebesta, M.2    Balogh, D.3    Haracska, L.4    Krejci, L.5
  • 9
    • 70350131505 scopus 로고    scopus 로고
    • Biochemical characterisation of the SWI/SNF family member HLTF
    • MacKay C, Toth R, Rouse J (2009) Biochemical characterisation of the SWI/SNF family member HLTF. Biochem Biophys Res Commun 390(2):187-191.
    • (2009) Biochem Biophys Res Commun , vol.390 , Issue.2 , pp. 187-191
    • MacKay, C.1    Toth, R.2    Rouse, J.3
  • 10
    • 84864923437 scopus 로고    scopus 로고
    • The HARP-like domain-containing protein AH2/ ZRANB3 binds to PCNA and participates in cellular response to replication stress
    • Yuan J, Ghosal G, Chen J (2012) The HARP-like domain-containing protein AH2/ ZRANB3 binds to PCNA and participates in cellular response to replication stress. Mol Cell 47(3):410-421.
    • (2012) Mol Cell , vol.47 , Issue.3 , pp. 410-421
    • Yuan, J.1    Ghosal, G.2    Chen, J.3
  • 11
    • 55349121223 scopus 로고    scopus 로고
    • HARP is an ATP-driven annealing helicase
    • Yusufzai T, Kadonaga JT (2008) HARP is an ATP-driven annealing helicase. Science 322(5902):748-750.
    • (2008) Science , vol.322 , Issue.5902 , pp. 748-750
    • Yusufzai, T.1    Kadonaga, J.T.2
  • 12
    • 84930004359 scopus 로고    scopus 로고
    • Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance
    • Hishiki A, et al. (2015) Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance. J Biol Chem 290(21):13215-13223.
    • (2015) J Biol Chem , vol.290 , Issue.21 , pp. 13215-13223
    • Hishiki, A.1
  • 13
    • 84879796452 scopus 로고    scopus 로고
    • Substrate-selective repair and restart of replication forks by DNA translocases
    • Bétous R, et al. (2013) Substrate-selective repair and restart of replication forks by DNA translocases. Cell Reports 3(6):1958-1969.
    • (2013) Cell Reports , vol.3 , Issue.6 , pp. 1958-1969
    • Bétous, R.1
  • 14
    • 79954505570 scopus 로고    scopus 로고
    • SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis
    • Lin JR, Zeman MK, Chen JY, Yee MC, Cimprich KA (2011) SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 42(2):237-249.
    • (2011) Mol Cell , vol.42 , Issue.2 , pp. 237-249
    • Lin, J.R.1    Zeman, M.K.2    Chen, J.Y.3    Yee, M.C.4    Cimprich, K.A.5
  • 15
    • 84864014165 scopus 로고    scopus 로고
    • ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response
    • Weston R, Peeters H, Ahel D (2012) ZRANB3 is a structure-specific ATP-dependent endonuclease involved in replication stress response. Genes Dev 26(14):1558-1572.
    • (2012) Genes Dev , vol.26 , Issue.14 , pp. 1558-1572
    • Weston, R.1    Peeters, H.2    Ahel, D.3
  • 16
    • 78650448305 scopus 로고    scopus 로고
    • Annealing helicase 2 (AH2), a DNA-rewinding motor with an HNH motif
    • Yusufzai T, Kadonaga JT (2010) Annealing helicase 2 (AH2), a DNA-rewinding motor with an HNH motif. Proc Natl Acad Sci USA 107(49):20970-20973.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.49 , pp. 20970-20973
    • Yusufzai, T.1    Kadonaga, J.T.2
  • 17
    • 70350088521 scopus 로고    scopus 로고
    • The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart
    • Ciccia A, et al. (2009) The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev 23(20):2415-2425.
    • (2009) Genes Dev , vol.23 , Issue.20 , pp. 2415-2425
    • Ciccia, A.1
  • 18
    • 72149132821 scopus 로고    scopus 로고
    • Identification of SMARCAL1 as a component of the DNA damage response
    • Postow L, Woo EM, Chait BT, Funabiki H (2009) Identification of SMARCAL1 as a component of the DNA damage response. J Biol Chem 284(51):35951-35961.
    • (2009) J Biol Chem , vol.284 , Issue.51 , pp. 35951-35961
    • Postow, L.1    Woo, E.M.2    Chait, B.T.3    Funabiki, H.4
  • 19
    • 70350118815 scopus 로고    scopus 로고
    • The annealing helicase HARP protects stalled replication forks
    • Yuan J, Ghosal G, Chen J (2009) The annealing helicase HARP protects stalled replication forks. Genes Dev 23(20):2394-2399.
    • (2009) Genes Dev , vol.23 , Issue.20 , pp. 2394-2399
    • Yuan, J.1    Ghosal, G.2    Chen, J.3
  • 20
    • 18544381908 scopus 로고    scopus 로고
    • Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia
    • Boerkoel CF, et al. (2002) Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat Genet 30(2):215-220.
    • (2002) Nat Genet , vol.30 , Issue.2 , pp. 215-220
    • Boerkoel, C.F.1
  • 21
    • 84879794753 scopus 로고    scopus 로고
    • Schimke Immunoosseous Dysplasia associated with undifferentiated carcinoma and a novel SMARCAL1 mutation in a child
    • Carroll C, et al. (2013) Schimke Immunoosseous Dysplasia associated with undifferentiated carcinoma and a novel SMARCAL1 mutation in a child. Pediatr Blood Cancer 60(9):E88-E90.
    • (2013) Pediatr Blood Cancer , vol.60 , Issue.9 , pp. E88-E90
    • Carroll, C.1
  • 22
    • 84865534009 scopus 로고    scopus 로고
    • SMARCAL1 deficiency predisposes to non-Hodgkin lymphoma and hypersensitivity to genotoxic agents in vivo
    • Baradaran-Heravi A, et al. (2012) SMARCAL1 deficiency predisposes to non-Hodgkin lymphoma and hypersensitivity to genotoxic agents in vivo. Am J Med Genet A 158A(9):2204-2213.
    • (2012) Am J Med Genet A , vol.158 A , Issue.9 , pp. 2204-2213
    • Baradaran-Heravi, A.1
  • 23
    • 79957996057 scopus 로고    scopus 로고
    • The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1
    • Ghosal G, Yuan J, Chen J (2011) The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1. EMBO Rep 12(6):574-580.
    • (2011) EMBO Rep , vol.12 , Issue.6 , pp. 574-580
    • Ghosal, G.1    Yuan, J.2    Chen, J.3
  • 24
    • 84901659492 scopus 로고    scopus 로고
    • A structure-specific nucleic acid-binding domain conserved among DNA repair proteins
    • Mason AC, et al. (2014) A structure-specific nucleic acid-binding domain conserved among DNA repair proteins. Proc Natl Acad Sci USA 111(21):7618-7623.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.21 , pp. 7618-7623
    • Mason, A.C.1
  • 25
    • 84922819486 scopus 로고    scopus 로고
    • High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling
    • Bhat KP, Bétous R, Cortez D (2015) High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling. J Biol Chem 290(7):4110-4117.
    • (2015) J Biol Chem , vol.290 , Issue.7 , pp. 4110-4117
    • Bhat, K.P.1    Bétous, R.2    Cortez, D.3
  • 26
    • 77957686153 scopus 로고    scopus 로고
    • SMARCAL1 and replication stress: An explanation for SIOD?
    • Bansbach CE, Boerkoel CF, Cortez D (2010) SMARCAL1 and replication stress: An explanation for SIOD? Nucleus 1(3):245-248.
    • (2010) Nucleus , vol.1 , Issue.3 , pp. 245-248
    • Bansbach, C.E.1    Boerkoel, C.F.2    Cortez, D.3
  • 27
    • 34648843213 scopus 로고    scopus 로고
    • How telomeres are replicated
    • Gilson E, Géli V (2007) How telomeres are replicated. Nat RevMol Cell Biol 8(10):825-838.
    • (2007) Nat RevMol Cell Biol , vol.8 , Issue.10 , pp. 825-838
    • Gilson, E.1    Géli, V.2
  • 28
    • 67649635974 scopus 로고    scopus 로고
    • Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication
    • Sfeir A, et al. (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138(1):90-103.
    • (2009) Cell , vol.138 , Issue.1 , pp. 90-103
    • Sfeir, A.1
  • 29
    • 84867744921 scopus 로고    scopus 로고
    • DNA secondary structures: Stability and function of G-quadruplex structures
    • Bochman ML, Paeschke K, Zakian VA (2012) DNA secondary structures: Stability and function of G-quadruplex structures. Nat Rev Genet 13(11):770-780.
    • (2012) Nat Rev Genet , vol.13 , Issue.11 , pp. 770-780
    • Bochman, M.L.1    Paeschke, K.2    Zakian, V.A.3
  • 30
    • 0033553536 scopus 로고    scopus 로고
    • Mammalian telomeres end in a large duplex loop
    • Griffith JD, et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4):503-514.
    • (1999) Cell , vol.97 , Issue.4 , pp. 503-514
    • Griffith, J.D.1
  • 31
    • 81355150876 scopus 로고    scopus 로고
    • Telomere protection by TPP1/POT1 requires tethering to TIN2
    • Takai KK, Kibe T, Donigian JR, Frescas D, de Lange T (2011) Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell 44(4):647-659.
    • (2011) Mol Cell , vol.44 , Issue.4 , pp. 647-659
    • Takai, K.K.1    Kibe, T.2    Donigian, J.R.3    Frescas, D.4    De Lange, T.5
  • 32
    • 77958479503 scopus 로고    scopus 로고
    • A Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion
    • Gong Y, de Lange T (2010) A Shld1-controlled POT1a provides support for repression of ATR signaling at telomeres through RPA exclusion. Mol Cell 40(3):377-387.
    • (2010) Mol Cell , vol.40 , Issue.3 , pp. 377-387
    • Gong, Y.1    De Lange, T.2
  • 33
    • 84893757512 scopus 로고    scopus 로고
    • Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1
    • O'Sullivan RJ, et al. (2014) Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat Struct Mol Biol 21(2):167-174.
    • (2014) Nat Struct Mol Biol , vol.21 , Issue.2 , pp. 167-174
    • O'Sullivan, R.J.1
  • 34
    • 84860854071 scopus 로고    scopus 로고
    • RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity
    • Vannier JB, Pavicic-Kaltenbrunner V, Petalcorin MI, Ding H, Boulton SJ (2012) RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149(4):795-806.
    • (2012) Cell , vol.149 , Issue.4 , pp. 795-806
    • Vannier, J.B.1    Pavicic-Kaltenbrunner, V.2    Petalcorin, M.I.3    Ding, H.4    Boulton, S.J.5
  • 35
    • 77951133257 scopus 로고    scopus 로고
    • Alternative lengthening of telomeres: Models, mechanisms and implications
    • Cesare AJ, Reddel RR (2010) Alternative lengthening of telomeres: Models, mechanisms and implications. Nat Rev Genet 11(5):319-330.
    • (2010) Nat Rev Genet , vol.11 , Issue.5 , pp. 319-330
    • Cesare, A.J.1    Reddel, R.R.2
  • 36
    • 84863824454 scopus 로고    scopus 로고
    • PML body meets telomere: The beginning of an ALTernate ending?
    • Chung I, Osterwald S, Deeg KI, Rippe K (2012) PML body meets telomere: The beginning of an ALTernate ending? Nucleus 3(3):263-275.
    • (2012) Nucleus , vol.3 , Issue.3 , pp. 263-275
    • Chung, I.1    Osterwald, S.2    Deeg, K.I.3    Rippe, K.4
  • 37
    • 84877328520 scopus 로고    scopus 로고
    • Identification and characterization of SMARCAL1 protein complexes
    • Bétous R, Glick GG, Zhao R, Cortez D (2013) Identification and characterization of SMARCAL1 protein complexes. PLoS One 8(5):e63149.
    • (2013) PLoS One , vol.8 , Issue.5
    • Bétous, R.1    Glick, G.G.2    Zhao, R.3    Cortez, D.4
  • 38
    • 84901352249 scopus 로고    scopus 로고
    • Human RECQL1 participates in telomere maintenance
    • Popuri V, et al. (2014) Human RECQL1 participates in telomere maintenance. Nucleic Acids Res 42(9):5671-5688.
    • (2014) Nucleic Acids Res , vol.42 , Issue.9 , pp. 5671-5688
    • Popuri, V.1
  • 39
    • 71849088980 scopus 로고    scopus 로고
    • DNA C-circles are specific and quantifiable markers of alternative- lengthening-of-telomeres activity
    • Henson JD, et al. (2009) DNA C-circles are specific and quantifiable markers of alternative- lengthening-of-telomeres activity. Nat Biotechnol 27(12):1181-1185.
    • (2009) Nat Biotechnol , vol.27 , Issue.12 , pp. 1181-1185
    • Henson, J.D.1
  • 40
    • 67649662604 scopus 로고    scopus 로고
    • Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair
    • Svendsen JM, et al. (2009) Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138(1):63-77.
    • (2009) Cell , vol.138 , Issue.1 , pp. 63-77
    • Svendsen, J.M.1
  • 41
    • 0034678127 scopus 로고    scopus 로고
    • A eukaryotic SWI2/ SNF2 domain, an exquisite detector of double-stranded to single-stranded DNA transition elements
    • Muthuswami R, Truman PA, Mesner LD, Hockensmith JW (2000) A eukaryotic SWI2/ SNF2 domain, an exquisite detector of double-stranded to single-stranded DNA transition elements. J Biol Chem 275(11):7648-7655.
    • (2000) J Biol Chem , vol.275 , Issue.11 , pp. 7648-7655
    • Muthuswami, R.1    Truman, P.A.2    Mesner, L.D.3    Hockensmith, J.W.4
  • 42
    • 0032145569 scopus 로고    scopus 로고
    • Myc signaling via the ARF tumor suppressor regulates p53- dependent apoptosis and immortalization
    • Zindy F, et al. (1998) Myc signaling via the ARF tumor suppressor regulates p53- dependent apoptosis and immortalization. Genes Dev 12(15):2424-2433.
    • (1998) Genes Dev , vol.12 , Issue.15 , pp. 2424-2433
    • Zindy, F.1
  • 43
    • 84910628583 scopus 로고    scopus 로고
    • TRF1 negotiates TTAGGG repeatassociated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling
    • Zimmermann M, Kibe T, Kabir S, de Lange T (2014) TRF1 negotiates TTAGGG repeatassociated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev 28(22):2477-2491.
    • (2014) Genes Dev , vol.28 , Issue.22 , pp. 2477-2491
    • Zimmermann, M.1    Kibe, T.2    Kabir, S.3    De Lange, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.