-
1
-
-
84897128298
-
The noncoding RNA revolution -Trashing old rules to forge new ones
-
Cech T. R, & Steitz J. A. The noncoding RNA revolution -Trashing old rules to forge new ones. Cell 157, 77-94 (2014).
-
(2014)
Cell
, vol.157
, pp. 77-94
-
-
Cech, T.R.1
Steitz, J.A.2
-
2
-
-
56949096652
-
Small RNAs establish gene expression thresholds
-
Levine E, & Hwa T. Small RNAs establish gene expression thresholds. Curr. Opin. Microbiol. 11, 574-579 (2008).
-
(2008)
Curr. Opin. Microbiol
, vol.11
, pp. 574-579
-
-
Levine, E.1
Hwa, T.2
-
3
-
-
0141860088
-
Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli
-
Mass, E, Escorcia F. E, & Gottesman S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17, 2374-2383 (2003).
-
(2003)
Genes Dev
, vol.17
, pp. 2374-2383
-
-
Mass, E.1
Escorcia, F.E.2
Gottesman, S.3
-
4
-
-
58249088751
-
MicroRNAs: Target recognition and regulatory functions
-
Bartel D. P. MicroRNAs: Target recognition and regulatory functions. Cell 136, 215-233 (2009).
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
5
-
-
0029163563
-
RNA chaperones and the RNA folding problem
-
Herschlag D. RNA chaperones and the RNA folding problem. J. Biol. Chem. 270, 20871-20874 (1995).
-
(1995)
J. Biol. Chem
, vol.270
, pp. 20871-20874
-
-
Herschlag, D.1
-
8
-
-
84934293424
-
Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides
-
Salomon W. E, Jolly S. M, Moore M. J, Zamore P. D, & Serebrov V. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84-95 (2015).
-
(2015)
Cell
, vol.162
, pp. 84-95
-
-
Salomon, W.E.1
Jolly, S.M.2
Moore, M.J.3
Zamore, P.D.4
Serebrov, V.5
-
9
-
-
84893693085
-
Planting the seed: Target recognition of short guide RNAs
-
Kunne T, Swarts D. C, & Brouns S. J. Planting the seed: Target recognition of short guide RNAs. Trends Microbiol. 22, 74-83 (2014).
-
(2014)
Trends Microbiol
, vol.22
, pp. 74-83
-
-
Kunne, T.1
Swarts, D.C.2
Brouns, S.J.3
-
10
-
-
0017182937
-
Structural domains of transfer RNA molecules
-
Quigley G. J, & Rich A. Structural domains of transfer RNA molecules. Science 194, 796-806 (1976).
-
(1976)
Science
, vol.194
, pp. 796-806
-
-
Quigley, G.J.1
Rich, A.2
-
11
-
-
0036371843
-
Antisense RNAs in bacteria and their genetic elements
-
Wagner E. G, Altuvia S, & Romby P. Antisense RNAs in bacteria and their genetic elements. Adv. Genet. 46, 361-398 (2002).
-
(2002)
Adv. Genet
, vol.46
, pp. 361-398
-
-
Wagner, E.G.1
Altuvia, S.2
Romby, P.3
-
13
-
-
84923279931
-
The structural biology of crispr-cas systems
-
Jiang F, & Doudna J. A. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30, 100-111 (2015).
-
(2015)
Curr. Opin. Struct. Biol
, vol.30
, pp. 100-111
-
-
Jiang, F.1
Doudna, J.A.2
-
14
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR-Cas systems
-
van der Oost J, Westra E. R, Jackson R. N, & Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol. 12, 479-492 (2014).
-
(2014)
Nat. Rev. Microbiol
, vol.12
, pp. 479-492
-
-
Van Der Oost, J.1
Westra, E.R.2
Jackson, R.N.3
Wiedenheft, B.4
-
15
-
-
84908604171
-
The evolutionary journey of Argonaute proteins
-
Swarts D. C, et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743-753 (2014).
-
(2014)
Nat. Struct. Mol. Biol
, vol.21
, pp. 743-753
-
-
Swarts, D.C.1
-
16
-
-
84879414849
-
Argonaute proteins: Functional insights and emerging roles
-
Meister G. Argonaute proteins: Functional insights and emerging roles. Nat. Rev. Genet. 14, 447-459 (2013).
-
(2013)
Nat. Rev. Genet
, vol.14
, pp. 447-459
-
-
Meister, G.1
-
17
-
-
84933574487
-
Cas9 guide RNA complex preorganized for target DNA recognition
-
Jiang F, Zhou K, Ma L, Gressel S, & Doudna J. A. A. Cas9 guide RNA complex preorganized for target DNA recognition. Science 348, 1477-1481 (2015).
-
(2015)
Science
, vol.348
, pp. 1477-1481
-
-
Jiang, F.1
Zhou, K.2
Ma, L.3
Gressel, S.4
Doudna, J.A.A.5
-
19
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
Nishimasu H, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949 (2014).
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
-
20
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
Jinek M, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
-
21
-
-
84929002871
-
Recognition of the small regulatory RNA RydC by the bacterial Hfq protein
-
Dimastrogiovanni D, et al. Recognition of the small regulatory RNA RydC by the bacterial Hfq protein. eLife 3, e05375 (2014).
-
(2014)
ELife
, vol.3
, pp. e05375
-
-
Dimastrogiovanni, D.1
-
22
-
-
84908508061
-
Structural basis of pam-dependent target DNA recognition by the cas9 endonuclease
-
Anders C, Niewoehner O, Duerst A, & Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 (2014).
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
23
-
-
84861451595
-
The crystal structure of human Argonaute2
-
Schirle N. T, & MacRae I. J. The crystal structure of human Argonaute2. Science 336, 1037-1040 (2012).
-
(2012)
Science
, vol.336
, pp. 1037-1040
-
-
Schirle, N.T.1
MacRae, I.J.2
-
24
-
-
84862558196
-
Structure of yeast Argonaute with guide RNA
-
Nakanishi K, Weinberg D. E, Bartel D. P, & Patel D. J. Structure of yeast Argonaute with guide RNA. Nature 486, 368-374 (2012).
-
(2012)
Nature
, vol.486
, pp. 368-374
-
-
Nakanishi, K.1
Weinberg, D.E.2
Bartel, D.P.3
Patel, D.J.4
-
25
-
-
84863624199
-
The structure of human argonaute 2 in complex with MIR 20a
-
Elkayam E, et al. The structure of human argonaute 2 in complex with miR 20a. Cell 150, 100-110 (2012).
-
(2012)
Cell
, vol.150
, pp. 100-110
-
-
Elkayam, E.1
-
26
-
-
70349961432
-
Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes
-
Wang Y, et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754-761 (2009).
-
(2009)
Nature
, vol.461
, pp. 754-761
-
-
Wang, Y.1
-
27
-
-
57749206034
-
Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex
-
Wang Y, et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921-926 (2008).
-
(2008)
Nature
, vol.456
, pp. 921-926
-
-
Wang, Y.1
-
28
-
-
84934286853
-
Dynamic search process underlies microRNA targeting
-
Chandradoss S. D, Schirle N. T, Szczepaniak M, MacRae I. J, & Joo C. A. Dynamic search process underlies microRNA targeting. Cell 162, 96-107 (2015).
-
(2015)
Cell
, vol.162
, pp. 96-107
-
-
Chandradoss, S.D.1
Schirle, N.T.2
Szczepaniak, M.3
MacRae, I.J.4
Joo, C.A.5
-
29
-
-
84903975702
-
Direct observation of R loop formation by single RNA-guided Cas9 and Cascade effector complexes
-
Szczelkun M. D, et al. Direct observation of R loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc. Natl Acad. Sci. USA 111, 9798-9803 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 9798-9803
-
-
Szczelkun, M.D.1
-
30
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg S. H, Redding S, Jinek M, Greene E. C, & Doudna J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67 (2014).
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
31
-
-
84948749911
-
A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome
-
Fromm B, et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu. Rev. Genet. 49, 213-242 (2015).
-
(2015)
Annu Rev. Genet
, vol.49
, pp. 213-242
-
-
Fromm, B.1
-
32
-
-
77952368550
-
Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes
-
Chiang H. R, et al. Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992-1009 (2010).
-
(2010)
Genes Dev
, vol.24
, pp. 992-1009
-
-
Chiang, H.R.1
-
33
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman R. C, Farh K. K, Burge C. B, & Bartel D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105 (2009).
-
(2009)
Genome Res
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.2
Burge, C.B.3
Bartel, D.P.4
-
34
-
-
78650306521
-
Small RNA sorting: Matchmaking for Argonautes
-
Czech B, & Hannon G. J. Small RNA sorting: Matchmaking for Argonautes. Nat. Rev. Genet. 12, 19-31 (2011).
-
(2011)
Nat. Rev. Genet
, vol.12
, pp. 19-31
-
-
Czech, B.1
Hannon, G.J.2
-
35
-
-
84876739532
-
Eukaryotic Argonautes come into focus
-
Kuhn C. D, & Joshua-Tor L. Eukaryotic Argonautes come into focus. Trends Biochem. Sci. 38, 263-271 (2013).
-
(2013)
Trends Biochem. Sci
, vol.38
, pp. 263-271
-
-
Kuhn, C.D.1
Joshua-Tor, L.2
-
37
-
-
84931572130
-
Towards a molecular understanding of microRNA-mediated gene silencing
-
Jonas S, & Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16, 421-433 (2015).
-
(2015)
Nat. Rev. Genet
, vol.16
, pp. 421-433
-
-
Jonas, S.1
Izaurralde, E.2
-
38
-
-
0036544755
-
Micro RNAs are complementary to 3 UTR sequence motifs that mediate negative post-Transcriptional regulation
-
Lai E. C. Micro RNAs are complementary to 3 UTR sequence motifs that mediate negative post-Transcriptional regulation. Nat. Genet. 30, 363-364 (2002).
-
(2002)
Nat. Genet
, vol.30
, pp. 363-364
-
-
Lai, E.C.1
-
39
-
-
0346094457
-
Prediction of mammalian microRNA targets
-
Lewis B. P, Shih I. H, Jones-Rhoades M. W, Bartel D. P, & Burge C. B. Prediction of mammalian microRNA targets. Cell 115, 787-798 (2003).
-
(2003)
Cell
, vol.115
, pp. 787-798
-
-
Lewis, B.P.1
Shih, I.H.2
Jones-Rhoades, M.W.3
Bartel, D.P.4
Burge, C.B.5
-
40
-
-
18044377963
-
Principles of microRNA-Target recognition
-
Brennecke J, Stark A, Russell R. B, & Cohen S. M. Principles of microRNA-Target recognition. PLoS Biol. 3, e85 (2005).
-
(2005)
PLoS Biol
, vol.3
, pp. e85
-
-
Brennecke, J.1
Stark, A.2
Russell, R.B.3
Cohen, S.M.4
-
41
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
Lewis B. P, Burge C. B, & Bartel D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20 (2005).
-
(2005)
Cell
, vol.120
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
42
-
-
13944282215
-
Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
-
Lim L. P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773 (2005).
-
(2005)
Nature
, vol.433
, pp. 769-773
-
-
Lim, L.P.1
-
43
-
-
84870038812
-
Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties
-
Wee L. M, Flores-Jasso C. F, Salomon W. E, & Zamore P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055-1067 (2012).
-
(2012)
Cell
, vol.151
, pp. 1055-1067
-
-
Wee, L.M.1
Flores-Jasso, C.F.2
Salomon, W.E.3
Zamore, P.D.4
-
44
-
-
34447102459
-
Molecular basis for target RNA recognition and cleavage by human RISC
-
Ameres S. L, Martinez J, & Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101-112 (2007).
-
(2007)
Cell
, vol.130
, pp. 101-112
-
-
Ameres, S.L.1
Martinez, J.2
Schroeder, R.3
-
45
-
-
3042602447
-
Kinetic analysis of the RNAi enzyme complex
-
Haley B, & Zamore P. D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599-606 (2004).
-
(2004)
Nat. Struct. Mol. Biol
, vol.11
, pp. 599-606
-
-
Haley, B.1
Zamore, P.D.2
-
46
-
-
1642374097
-
Specificity of microRNA target selection in translational repression
-
Doench J. G, & Sharp P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504-511 (2004).
-
(2004)
Genes Dev
, vol.18
, pp. 504-511
-
-
Doench, J.G.1
Sharp, P.A.2
-
47
-
-
34250805982
-
MicroRNA targeting specificity in mammals: Determinants beyond seed pairing
-
Grimson A, et al. MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol. Cell 27, 91-105 (2007).
-
(2007)
Mol. Cell
, vol.27
, pp. 91-105
-
-
Grimson, A.1
-
48
-
-
56249145105
-
Structure of the guide-strand-containing argonaute silencing complex
-
Wang Y, Sheng G, Juranek S, Tuschl T, & Patel D. J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209-213 (2008).
-
(2008)
Nature
, vol.456
, pp. 209-213
-
-
Wang, Y.1
Sheng, G.2
Juranek, S.3
Tuschl, T.4
Patel, D.J.5
-
49
-
-
4444363152
-
Microrna control of phabulosa in leaf development: Importance of pairing to the microrna 5 region
-
Mallory A. C, et al. MicroRNA control of PHABULOSA in leaf development: Importance of pairing to the microRNA 5 region. EMBO J. 23, 3356-3364 (2004).
-
(2004)
EMBO J
, vol.23
, pp. 3356-3364
-
-
Mallory, A.C.1
-
50
-
-
58649113420
-
Enhancement of the seed-Target recognition step in RNA silencing by a PIWI/MID domain protein
-
Parker J. S, Parizotto E. A, Wang M, Roe S. M, & Barford D. Enhancement of the seed-Target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell 33, 204-214 (2009).
-
(2009)
Mol. Cell
, vol.33
, pp. 204-214
-
-
Parker, J.S.1
Parizotto, E.A.2
Wang, M.3
Roe, S.M.4
Barford, D.5
-
51
-
-
84937134068
-
Human Argonaute 2 has diverse reaction pathways on target RNAs
-
Jo M. H, et al. Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell 59, 117-124 (2015).
-
(2015)
Mol. Cell
, vol.59
, pp. 117-124
-
-
Jo, M.H.1
-
52
-
-
67749132423
-
Argonaute hits-clip decodes microrna-mRNA interaction maps
-
Chi S. W, Zang J. B, Mele A, & Darnell R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486 (2009).
-
(2009)
Nature
, vol.460
, pp. 479-486
-
-
Chi, S.W.1
Zang, J.B.2
Mele, A.3
Darnell, R.B.4
-
53
-
-
77950920903
-
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
-
Hafner M, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129-141 (2010).
-
(2010)
Cell
, vol.141
, pp. 129-141
-
-
Hafner, M.1
-
54
-
-
84903616729
-
Unambiguous identification of miRNA:target site interactions by different types of ligation reactions
-
Grosswendt S, et al. Unambiguous identification of miRNA:target site interactions by different types of ligation reactions. Mol. Cell 54, 1042-1054 (2014).
-
(2014)
Mol. Cell
, vol.54
, pp. 1042-1054
-
-
Grosswendt, S.1
-
55
-
-
84876935138
-
Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding
-
Helwak A, Kudla G, Dudnakova T, & Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654-665 (2013).
-
(2013)
Cell
, vol.153
, pp. 654-665
-
-
Helwak, A.1
Kudla, G.2
Dudnakova, T.3
Tollervey, D.4
-
56
-
-
84948672434
-
MiRNA-Target chimeras reveal miRNA 3 end pairing as a major determinant of Argonaute target specificity
-
Moore M. J, et al. miRNA-Target chimeras reveal miRNA 3 end pairing as a major determinant of Argonaute target specificity. Nat. Commun. 6, 8864 (2015).
-
(2015)
Nat. Commun
, vol.6
, pp. 8864
-
-
Moore, M.J.1
-
57
-
-
84940502214
-
Predicting effective microRNA target sites in mammalian mRNAs
-
Agarwal V, Bell G. W, Nam J. W, & Bartel D. P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 4, e05005 (2015).
-
(2015)
ELife
, vol.4
, pp. e05005
-
-
Agarwal, V.1
Bell, G.W.2
Nam, J.W.3
Bartel, D.P.4
-
58
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
Marraffini L. A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61 (2015).
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
59
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova K. S, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722-736 (2015).
-
(2015)
Nat. Rev. Microbiol
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
60
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu P. D, Lander E. S, & Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 (2014).
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
61
-
-
84913594397
-
Genome editing the new frontier of genome engineering with CRISPR-Cas9
-
Doudna J. A, & Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
62
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 (2011).
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
63
-
-
84878482772
-
High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates
-
Dugar G, et al. High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet. 9, e1003495 (2013).
-
(2013)
PLoS Genet
, vol.9
, pp. e1003495
-
-
Dugar, G.1
-
64
-
-
84878193178
-
Processing-independent crispr rnas limit natural transformation in neisseria meningitidis
-
Zhang Y, et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50, 488-503 (2013).
-
(2013)
Mol. Cell
, vol.50
, pp. 488-503
-
-
Zhang, Y.1
-
65
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 816-821 (2012).
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
66
-
-
84958953000
-
Structures of a CRISPR-Cas9 R loop complex primed for DNA cleavage
-
Jiang F, et al. Structures of a CRISPR-Cas9 R loop complex primed for DNA cleavage. Science 351, 867-871 (2016).
-
(2016)
Science
, vol.351
, pp. 867-871
-
-
Jiang, F.1
-
67
-
-
84940368054
-
Crystal structure of Staphylococcus aureus Cas9
-
Nishimasu H, et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113-1126 (2015).
-
(2015)
Cell
, vol.162
, pp. 1113-1126
-
-
Nishimasu, H.1
-
68
-
-
80053019485
-
Regulation by small RNAs in bacteria: Expanding frontiers
-
Storz G, Vogel J, & Wassarman K. M. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43, 880-891 (2011).
-
(2011)
Mol. Cell
, vol.43
, pp. 880-891
-
-
Storz, G.1
Vogel, J.2
Wassarman, K.M.3
-
69
-
-
84863924309
-
Bacterial small RNA regulators: Versatile roles and rapidly evolving variations
-
Gottesman S, & Storz G. Bacterial small RNA regulators: Versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 3, a003798 (2011).
-
(2011)
Cold Spring Harb. Perspect. Biol
, vol.3
, pp. a003798
-
-
Gottesman, S.1
Storz, G.2
-
70
-
-
84945484697
-
Small RNAs in bacteria and archaea: Who they are, what they do, and how they do it
-
Wagner E. G, & Romby P. Small RNAs in bacteria and archaea: Who they are, what they do, and how they do it. Adv. Genet. 90, 133-208 (2015).
-
(2015)
Adv. Genet
, vol.90
, pp. 133-208
-
-
Wagner, E.G.1
Romby, P.2
-
71
-
-
84964262313
-
Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions
-
Westermann A. J, et al. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529, 496-501 (2016).
-
(2016)
Nature
, vol.529
, pp. 496-501
-
-
Westermann, A.J.1
-
72
-
-
84928317979
-
Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli
-
Thomason M. K, et al. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli. J. Bacteriol. 197, 18-28 (2015).
-
(2015)
J. Bacteriol
, vol.197
, pp. 18-28
-
-
Thomason, M.K.1
-
73
-
-
84902678434
-
Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions
-
Peer A, & Margalit H. Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions. RNA 20, 994-1003 (2014).
-
(2014)
RNA
, vol.20
, pp. 994-1003
-
-
Peer, A.1
Margalit, H.2
-
74
-
-
84890302568
-
An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium
-
Kroger C, et al. An infection-relevant transcriptomic compendium for Salmonella enterica Serovar Typhimurium. Cell Host Microbe 14, 683-695 (2013).
-
(2013)
Cell Host Microbe
, vol.14
, pp. 683-695
-
-
Kroger, C.1
-
75
-
-
84922444526
-
Regulatory small RNAs from the 3 regions of bacterial mRNAs
-
Miyakoshi M, Chao Y, & Vogel J. Regulatory small RNAs from the 3 regions of bacterial mRNAs. Curr. Opin. Microbiol. 24, 132-139 (2015).
-
(2015)
Curr. Opin. Microbiol
, vol.24
, pp. 132-139
-
-
Miyakoshi, M.1
Chao, Y.2
Vogel, J.3
-
76
-
-
79960433506
-
Hfq and its constellation of RNA
-
Vogel J, & Luisi B. F. Hfq and its constellation of RNA. Nat. Rev. Microbiol. 9, 578-589 (2011).
-
(2011)
Nat. Rev. Microbiol
, vol.9
, pp. 578-589
-
-
Vogel, J.1
Luisi, B.F.2
-
77
-
-
84875457350
-
Bacterial small RNA-based negative regulation: Hfq and its accomplices
-
De Lay N, Schu D. J, & Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices. J. Biol. Chem. 288, 7996-8003 (2013).
-
(2013)
J. Biol. Chem
, vol.288
, pp. 7996-8003
-
-
De Lay, N.1
Schu, D.J.2
Gottesman, S.3
-
78
-
-
84939502874
-
Target activation by regulatory RNAs in bacteria
-
Papenfort K, & Vanderpool C. K. Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 39, 362-378 (2015).
-
(2015)
FEMS Microbiol. Rev
, vol.39
, pp. 362-378
-
-
Papenfort, K.1
Vanderpool, C.K.2
-
79
-
-
84913601442
-
Messenger RNA degradation in bacterial cells
-
Hui M. P, Foley P. L, & Belasco J. G. Messenger RNA degradation in bacterial cells. Annu. Rev. Genet. 48, 537-559 (2014).
-
(2014)
Annu. Rev. Genet
, vol.48
, pp. 537-559
-
-
Hui, M.P.1
Foley, P.L.2
Belasco, J.G.3
-
80
-
-
84876234571
-
Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis
-
Papenfort K, Sun Y, Miyakoshi M, Vanderpool C. K, & Vogel J. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153, 426-437 (2013).
-
(2013)
Cell
, vol.153
, pp. 426-437
-
-
Papenfort, K.1
Sun, Y.2
Miyakoshi, M.3
Vanderpool, C.K.4
Vogel, J.5
-
81
-
-
84877825351
-
Regulatory RNAs and target mRNA decay in prokaryotes
-
Lalaouna D, Simoneau-Roy M, Lafontaine D, & Masse E. Regulatory RNAs and target mRNA decay in prokaryotes. Biochim. Biophys. Acta 1829, 742-747 (2013).
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 742-747
-
-
Lalaouna, D.1
Simoneau-Roy, M.2
Lafontaine, D.3
Masse, E.4
-
82
-
-
84887826391
-
A small RNA activates CFA synthase by isoform-specific mRNA stabilization
-
Fröhlich K. S, Papenfort K, Fekete A, & Vogel J. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J. 32, 2963-2979 (2013).
-
(2013)
EMBO J
, vol.32
, pp. 2963-2979
-
-
Fröhlich, K.S.1
Papenfort, K.2
Fekete, A.3
Vogel, J.4
-
83
-
-
33746553370
-
Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq
-
Kawamoto H, Koide Y, Morita T, & Aiba H. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol. Microbiol. 61, 1013-1022 (2006).
-
(2006)
Mol. Microbiol
, vol.61
, pp. 1013-1022
-
-
Kawamoto, H.1
Koide, Y.2
Morita, T.3
Aiba, H.4
-
84
-
-
78650532236
-
Evidence for an autonomous 5 target recognition domain in an Hfq-Associated small RNA
-
Papenfort K, Bouvier M, Mika F, Sharma C. M, & Vogel J. Evidence for an autonomous 5 target recognition domain in an Hfq-Associated small RNA. Proc. Natl Acad. Sci. USA 107, 20435-20440 (2010).
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 20435-20440
-
-
Papenfort, K.1
Bouvier, M.2
Mika, F.3
Sharma, C.M.4
Vogel, J.5
-
85
-
-
78649346987
-
Recognition of heptameric seed sequence underlies multi-Target regulation by RybB small RNA in Salmonella enterica
-
Balbontin R, Fiorini F, Figueroa-Bossi N, Casadesus J, & Bossi L. Recognition of heptameric seed sequence underlies multi-Target regulation by RybB small RNA in Salmonella enterica. Mol. Microbiol. 78, 380-394 (2010).
-
(2010)
Mol. Microbiol
, vol.78
, pp. 380-394
-
-
Balbontin, R.1
Fiorini, F.2
Figueroa-Bossi, N.3
Casadesus, J.4
Bossi, L.5
-
86
-
-
84946220577
-
Comprehensive analysis reveals how single nucleotides contribute to noncoding RNA function in bacterial quorum sensing
-
Rutherford S. T, Valastyan J. S, Taillefumier T, Wingreen N. S, & Bassler B. L. Comprehensive analysis reveals how single nucleotides contribute to noncoding RNA function in bacterial quorum sensing. Proc. Natl Acad. Sci. USA 112, E6038-E6047 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. E6038-E6047
-
-
Rutherford, S.T.1
Valastyan, J.S.2
Taillefumier, T.3
Wingreen, N.S.4
Bassler, B.L.5
-
87
-
-
84992459016
-
Global mapping of small RNA-Target interactions in bacteria
-
Melamed S, et al. Global mapping of small RNA-Target interactions in bacteria. Mol. Cell 63, 884-897 (2016).
-
(2016)
Mol. Cell
, vol.63
, pp. 884-897
-
-
Melamed, S.1
-
88
-
-
8544271637
-
Involvement of a novel transcriptional activator and small RNA in post-Transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system
-
Vanderpool C. K, & Gottesman S. Involvement of a novel transcriptional activator and small RNA in post-Transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol. Microbiol. 54, 1076-1089 (2004).
-
(2004)
Mol. Microbiol
, vol.54
, pp. 1076-1089
-
-
Vanderpool, C.K.1
Gottesman, S.2
-
89
-
-
84859451156
-
The ancestral sgrs RNA discriminates horizontally acquired salmonella mRNAs through a single g u wobble pair
-
Papenfort K, Podkaminski D, Hinton J. C, & Vogel J. The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G U wobble pair. Proc. Natl Acad. Sci. USA 109, E757-E764 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. E757-E764
-
-
Papenfort, K.1
Podkaminski, D.2
Hinton, J.C.3
Vogel, J.4
-
90
-
-
57149111586
-
Small RNA binding to 5 mRNA coding region inhibits translational initiation
-
Bouvier M, Sharma C. M, Mika F, Nierhaus K. H, & Vogel J. Small RNA binding to 5 mRNA coding region inhibits translational initiation. Mol. Cell 32, 827-837 (2008).
-
(2008)
Mol. Cell
, vol.32
, pp. 827-837
-
-
Bouvier, M.1
Sharma, C.M.2
Mika, F.3
Nierhaus, K.H.4
Vogel, J.5
-
91
-
-
84873504430
-
Post-Transcriptional control of the Escherichia coli phoq-phop two-component system by multiple srnas involves a novel pairing region of gcvb
-
Coornaert A, Chiaruttini C, Springer M, & Guillier M. Post-Transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS Genet. 9, e1003156 (2013).
-
(2013)
PLoS Genet
, vol.9
, pp. e1003156
-
-
Coornaert, A.1
Chiaruttini, C.2
Springer, M.3
Guillier, M.4
-
92
-
-
80051929071
-
Pervasive post-Transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA
-
Sharma C. M, et al. Pervasive post-Transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol. Microbiol. 81, 1144-1165 (2011).
-
(2011)
Mol. Microbiol
, vol.81
, pp. 1144-1165
-
-
Sharma, C.M.1
-
93
-
-
79251559383
-
The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli
-
Beisel C. L, & Storz G. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. Mol. Cell 41, 286-297 (2011).
-
(2011)
Mol. Cell
, vol.41
, pp. 286-297
-
-
Beisel, C.L.1
Storz, G.2
-
94
-
-
70350176597
-
Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA
-
Papenfort K, et al. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. Mol. Microbiol. 74, 139-158 (2009).
-
(2009)
Mol. Microbiol
, vol.74
, pp. 139-158
-
-
Papenfort, K.1
-
95
-
-
85009735972
-
In vivo cleavage map illuminates the central role of RNAse e in coding and noncoding RNA pathways
-
Chao Y, et al. In vivo cleavage map illuminates the central role of RNase E in coding and noncoding RNA pathways. Mol. Cell 65, 39-51 (2017).
-
(2017)
Mol. Cell
, vol.65
, pp. 39-51
-
-
Chao, Y.1
-
96
-
-
84957427381
-
3 UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response
-
Chao Y, & Vogel J. A. 3 UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol. Cell 61, 352-363 (2016).
-
(2016)
Mol Cell
, vol.61
, pp. 352-363
-
-
Chao, Y.1
Vogel, J.A.2
-
97
-
-
84862232515
-
Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition
-
Sauer E, Schmidt S, & Weichenrieder O. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition. Proc. Natl Acad. Sci. USA 109, 9396-9401 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 9396-9401
-
-
Sauer, E.1
Schmidt, S.2
Weichenrieder, O.3
-
98
-
-
84870625738
-
Structural mechanism of staphylococcus aureus hfq binding to an RNA a tract
-
Horstmann N, et al. Structural mechanism of Staphylococcus aureus Hfq binding to an RNA A tract. Nucleic Acids Res. 40, 11023-11035 (2012).
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 11023-11035
-
-
Horstmann, N.1
-
99
-
-
0036645689
-
Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: A bacterial Sm like protein
-
Schumacher M. A, Pearson R. F, Moller T, Valentin Hansen P, & Brennan R. G. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: A bacterial Sm like protein. EMBO J. 21, 3546-3556 (2002).
-
(2002)
EMBO J
, vol.21
, pp. 3546-3556
-
-
Schumacher, M.A.1
Pearson, R.F.2
Moller, T.3
Valentin Hansen, P.4
Brennan, R.G.5
-
101
-
-
84944442094
-
Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition
-
Schu D. J, Zhang A, Gottesman S, & Storz G. Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition. EMBO J. 34, 2557-2573 (2015).
-
(2015)
EMBO J
, vol.34
, pp. 2557-2573
-
-
Schu, D.J.1
Zhang, A.2
Gottesman, S.3
Storz, G.4
-
102
-
-
84914125314
-
Structural model of an mRNA in complex with the bacterial chaperone Hfq
-
Peng Y, Curtis J. E, Fang X, & Woodson S. A. Structural model of an mRNA in complex with the bacterial chaperone Hfq. Proc. Natl Acad. Sci. USA 111, 17134-17139 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 17134-17139
-
-
Peng, Y.1
Curtis, J.E.2
Fang, X.3
Woodson, S.A.4
-
103
-
-
84883478358
-
Conserved arginines on the rim of Hfq catalyze base pair formation and exchange
-
Panja S, Schu D. J, & Woodson S. A. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange. Nucleic Acids Res. 41, 7536-7546 (2013).
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7536-7546
-
-
Panja, S.1
Schu, D.J.2
Woodson, S.A.3
-
104
-
-
84963595083
-
Global RNA recognition patterns of post-Transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo
-
Holmqvist E, et al. Global RNA recognition patterns of post-Transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J 35, 991-1011 (2016).
-
(2016)
EMBO J
, vol.35
, pp. 991-1011
-
-
Holmqvist, E.1
-
105
-
-
84904467798
-
Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli
-
Tree J. J, Granneman S, McAteer S. P, Tollervey D, & Gally D. L. Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. Mol. Cell 55, 199-213 (2014).
-
(2014)
Mol. Cell
, vol.55
, pp. 199-213
-
-
Tree, J.J.1
Granneman, S.2
McAteer, S.P.3
Tollervey, D.4
Gally, D.L.5
-
106
-
-
84940404135
-
Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella
-
Papenfort K, Espinosa E, Casadesus J, & Vogel J. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc. Natl Acad. Sci. USA 112, E4772-E4781 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. E4772-E4781
-
-
Papenfort, K.1
Espinosa, E.2
Casadesus, J.3
Vogel, J.4
-
107
-
-
84925337335
-
RNA biochemistry Determination of in vivo target search kinetics of regulatory noncoding RNA
-
Fei J, et al. RNA biochemistry. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science 347, 1371-1374 (2015).
-
(2015)
Science
, vol.347
, pp. 1371-1374
-
-
Fei, J.1
-
108
-
-
84908445494
-
Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli
-
Zhao H, et al. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515, 147-150 (2014).
-
(2014)
Nature
, vol.515
, pp. 147-150
-
-
Zhao, H.1
-
109
-
-
84907204893
-
Structural biology Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
-
Mulepati S, Heroux A, & Bailey S. Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345, 1479-1484 (2014).
-
(2014)
Science
, vol.345
, pp. 1479-1484
-
-
Mulepati, S.1
Heroux, A.2
Bailey, S.3
-
110
-
-
84907208955
-
Structural biology Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
-
Jackson R. N, et al. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345, 1473-1479 (2014).
-
(2014)
Science
, vol.345
, pp. 1473-1479
-
-
Jackson, R.N.1
-
111
-
-
80053169737
-
Structures of the RNA-guided surveillance complex from a bacterial immune system
-
Wiedenheft B, et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477, 486-489 (2011).
-
(2011)
Nature
, vol.477
, pp. 486-489
-
-
Wiedenheft, B.1
-
112
-
-
78649885541
-
RNAs actively cycle on the Sm like protein Hfq
-
Fender A, Elf J, Hampel K, Zimmermann B, & Wagner E. G. RNAs actively cycle on the Sm like protein Hfq. Genes Dev. 24, 2621-2626 (2010).
-
(2010)
Genes Dev
, vol.24
, pp. 2621-2626
-
-
Fender, A.1
Elf, J.2
Hampel, K.3
Zimmermann, B.4
Wagner, E.G.5
-
113
-
-
0033579543
-
Antisense RNA regulation in prokaryotes: Rapid RNA/RNA interaction facilitated by a general U turn loop structure
-
Franch T, Petersen M, Wagner E. G, Jacobsen J. P, & Gerdes K. Antisense RNA regulation in prokaryotes: Rapid RNA/RNA interaction facilitated by a general U turn loop structure. J. Mol. Biol. 294, 1115-1125 (1999).
-
(1999)
J. Mol. Biol
, vol.294
, pp. 1115-1125
-
-
Franch, T.1
Petersen, M.2
Wagner, E.G.3
Jacobsen, J.P.4
Gerdes, K.5
-
114
-
-
0036761417
-
RNA loop-loop interactions as dynamic functional motifs
-
Brunel C, Marquet R, Romby P, & Ehresmann C. RNA loop-loop interactions as dynamic functional motifs. Biochimie 84, 925-944 (2002).
-
(2002)
Biochimie
, vol.84
, pp. 925-944
-
-
Brunel, C.1
Marquet, R.2
Romby, P.3
Ehresmann, C.4
-
115
-
-
73849116916
-
A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation
-
Geissmann T, et al. A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res. 37, 7239-7257 (2009).
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 7239-7257
-
-
Geissmann, T.1
-
116
-
-
0025193146
-
External guide sequences for an RNA enzyme
-
Forster A. C, & Altman S. External guide sequences for an RNA enzyme. Science 249, 783-786 (1990).
-
(1990)
Science
, vol.249
, pp. 783-786
-
-
Forster, A.C.1
Altman, S.2
-
117
-
-
84980431995
-
Silencing of natural transformation by an RNA chaperone and a multitarget small RNA
-
Attaiech L, et al. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc. Natl Acad. Sci. USA 113, 8813-8818 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 8813-8818
-
-
Attaiech, L.1
-
118
-
-
84991489216
-
Grad-seq guides the discovery of ProQ as a major small RNA-binding protein
-
Smirnov A, et al. Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc. Natl Acad. Sci. USA 113, 11591-11596 (2016).
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 11591-11596
-
-
Smirnov, A.1
|