메뉴 건너뛰기




Volumn 17, Issue 5, 2014, Pages 757-773

Integration of EEMD and ICA for wind turbine gearbox diagnosis

Author keywords

bearing diagnosis; ensemble empirical mode decomposition; independent component analysis; wind turbine

Indexed keywords

BANDWIDTH; CONDITION MONITORING; DEFECTS; ELECTRIC FAULT CURRENTS; FREQUENCY DOMAIN ANALYSIS; FUNCTIONS; INDEPENDENT COMPONENT ANALYSIS; SIGNAL TO NOISE RATIO; SPECTRUM ANALYSIS; WIND TURBINES;

EID: 84897573267     PISSN: 10954244     EISSN: 10991824     Source Type: Journal    
DOI: 10.1002/we.1653     Document Type: Article
Times cited : (89)

References (40)
  • 3
    • 33846656697 scopus 로고    scopus 로고
    • Reliability analysis for wind turbines
    • Tavner PJ, Xiang J, Spinato F,. Reliability analysis for wind turbines. Wind Energy 2007; 10: 1-18.
    • (2007) Wind Energy , vol.10 , pp. 1-18
    • Tavner, P.J.1    Xiang, J.2    Spinato, F.3
  • 4
    • 63849321051 scopus 로고    scopus 로고
    • Structural health monitoring for a wind turbine system: A review of damage detection methods
    • Ciang C, Lee J, Bang H,. Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technology 2008; 19: 122001.
    • (2008) Measurement Science and Technology , vol.19 , pp. 122001
    • Ciang, C.1    Lee, J.2    Bang, H.3
  • 5
    • 84897572485 scopus 로고    scopus 로고
    • Wind turbine condition monitoring: Technical and commercial challenges
    • DOI: 10.1002/we.1508
    • Yang W, Tavner PJ, Crabtree CJ, Feng Y, Qiu Y,. Wind turbine condition monitoring: technical and commercial challenges. Wind Energy 2012. DOI: 10.1002/we.1508.
    • (2012) Wind Energy
    • Yang, W.1    Tavner, P.J.2    Crabtree, C.J.3    Feng, Y.4    Qiu, Y.5
  • 6
    • 79956197427 scopus 로고    scopus 로고
    • Structural health monitoring of wind turbines: Method and application to a HAWT
    • Adams D, White J, Rumsey M, Farrar C,. Structural health monitoring of wind turbines: method and application to a HAWT. Wind Energy 2011; 14: 603-623.
    • (2011) Wind Energy , vol.14 , pp. 603-623
    • Adams, D.1    White, J.2    Rumsey, M.3    Farrar, C.4
  • 10
    • 84862998489 scopus 로고    scopus 로고
    • A new wind turbine fault diagnosis method based on the local mean decomposition
    • Liu WY, Zhang WH, Han JG, Wang GF,. A new wind turbine fault diagnosis method based on the local mean decomposition. Renewable Energy 2012; 48: 411-415.
    • (2012) Renewable Energy , vol.48 , pp. 411-415
    • Liu, W.Y.1    Zhang, W.H.2    Han, J.G.3    Wang, G.F.4
  • 11
    • 77954875032 scopus 로고    scopus 로고
    • Physics of failure approach to wind turbine condition based maintenance
    • Gray CS, Watson SJ,. Physics of failure approach to wind turbine condition based maintenance. Wind Energy 2010; 13: 395-405.
    • (2010) Wind Energy , vol.13 , pp. 395-405
    • Gray, C.S.1    Watson, S.J.2
  • 15
    • 84897575958 scopus 로고    scopus 로고
    • Wind Turbine Condition Monitoring Workshop, Broomfield, CO, October 8-9
    • Walford C,. Estimating the benefits of CM for wind turbines, Wind Turbine Condition Monitoring Workshop, Broomfield, CO, October 8-9, 2009; 1-11.
    • (2009) Estimating the Benefits of CM for Wind Turbines , pp. 1-11
    • Walford, C.1
  • 16
    • 0345655304 scopus 로고    scopus 로고
    • Unsupervised noise cancellation for vibration signals: Part i - Evaluation of adaptive algorithms
    • Antoni J, Randall RB,. Unsupervised noise cancellation for vibration signals: part I-evaluation of adaptive algorithms. Mechanical Systems and Signal Processing 2004; 18: 89-101.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 89-101
    • Antoni, J.1    Randall, R.B.2
  • 17
    • 0037805069 scopus 로고    scopus 로고
    • Development of an advanced noise reduction method for vibration analysis based on singular value decomposition
    • Yang W, Tse PW,. Development of an advanced noise reduction method for vibration analysis based on singular value decomposition. NDT&E International 2003; 36: 419-432.
    • (2003) NDT&E International , vol.36 , pp. 419-432
    • Yang, W.1    Tse, P.W.2
  • 18
    • 0043151969 scopus 로고
    • A revised model for the extraction of periodic waveforms by time domain averaging
    • Fadden PD,. A revised model for the extraction of periodic waveforms by time domain averaging. Mechanical Systems and Signal Processing 1987; 1: 83-95.
    • (1987) Mechanical Systems and Signal Processing , vol.1 , pp. 83-95
    • Fadden, P.D.1
  • 19
    • 27644540297 scopus 로고    scopus 로고
    • Noise separation of the yarn tension signal on twister using FastICA
    • Chiu S, Lu C,. Noise separation of the yarn tension signal on twister using FastICA. Mechanical Systems and Signal Processing 2005; 19: 1326-1336.
    • (2005) Mechanical Systems and Signal Processing , vol.19 , pp. 1326-1336
    • Chiu, S.1    Lu, C.2
  • 20
    • 78049444138 scopus 로고    scopus 로고
    • Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches
    • Ge Z, Kruger U, Lamont L, Xie L, Song Z,. Fault detection in non-Gaussian vibration systems using dynamic statistical-based approaches. Mechanical Systems and Signal Processing 2010; 24: 2972-2984.
    • (2010) Mechanical Systems and Signal Processing , vol.24 , pp. 2972-2984
    • Ge, Z.1    Kruger, U.2    Lamont, L.3    Xie, L.4    Song, Z.5
  • 21
    • 34047269125 scopus 로고    scopus 로고
    • Detection of signal transients using independent component analysis and its application in gearbox condition monitoring
    • He Q, Feng Z, Kong F,. Detection of signal transients using independent component analysis and its application in gearbox condition monitoring. Mechanical Systems and Signal Processing 2007; 21: 2056-2071.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2056-2071
    • He, Q.1    Feng, Z.2    Kong, F.3
  • 22
    • 24144440092 scopus 로고    scopus 로고
    • Feature separation using ICA for a one-dimensional time series and its application in fault detection
    • Zuo MJ, Lin J, Fan X,. Feature separation using ICA for a one-dimensional time series and its application in fault detection. Journal of Sound and Vibration 2005; 287: 614-624.
    • (2005) Journal of Sound and Vibration , vol.287 , pp. 614-624
    • Zuo, M.J.1    Lin, J.2    Fan, X.3
  • 23
    • 18444368434 scopus 로고    scopus 로고
    • Fault feature separation using wavelet-ICA filter
    • Lin J, Zhang A,. Fault feature separation using wavelet-ICA filter. NDT&E International 2005; 38: 421-427.
    • (2005) NDT&E International , vol.38 , pp. 421-427
    • Lin, J.1    Zhang, A.2
  • 24
    • 50549098177 scopus 로고    scopus 로고
    • Separating mixed multi-component signal with application in mechanical watch movement
    • He Q, Su S, Du R,. Separating mixed multi-component signal with application in mechanical watch movement. Digital Signal Processing 2008; 18: 1013-1028.
    • (2008) Digital Signal Processing , vol.18 , pp. 1013-1028
    • He, Q.1    Su, S.2    Du, R.3
  • 26
    • 39749161545 scopus 로고    scopus 로고
    • A joint wavelet lifting and independent component analysis approach to fault detection of rolling element bearings
    • Fan X, Liang M, Yeap TH, Kind B,. A joint wavelet lifting and independent component analysis approach to fault detection of rolling element bearings. Smart Materials and Structures 2007; 16: 1973-1987.
    • (2007) Smart Materials and Structures , vol.16 , pp. 1973-1987
    • Fan, X.1    Liang, M.2    Yeap, T.H.3    Kind, B.4
  • 28
    • 54949146599 scopus 로고    scopus 로고
    • A review on Hilbert-Huang transform: Method and its applications to geophysical studies
    • Huang N, Wu Z,. A review on Hilbert-Huang transform: method and its applications to geophysical studies. Reviews of Geophysics 2008; 46: 1-23.
    • (2008) Reviews of Geophysics , vol.46 , pp. 1-23
    • Huang, N.1    Wu, Z.2
  • 29
    • 45249116751 scopus 로고    scopus 로고
    • Rotary machine health diagnosis based on empirical mode decomposition
    • Yan R, Gao RX,. Rotary machine health diagnosis based on empirical mode decomposition. Journal of Vibration and Acoustics 2008; 130: 021007-1.
    • (2008) Journal of Vibration and Acoustics , vol.130 , pp. 21007-21001
    • Yan, R.1    Gao, R.X.2
  • 30
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise assisted data analysis method
    • Wu Z, Huang N,. Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in Adaptive Data Analysis 2009; 1 (1): 1-41.
    • (2009) Advances in Adaptive Data Analysis , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.2
  • 31
    • 72149130282 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs
    • Lei Y, Zuo MJ,. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs. Measurement Science & Technology 2009; 20: 125701-1.
    • (2009) Measurement Science & Technology , vol.20 , pp. 125701-125701
    • Lei, Y.1    Zuo, M.J.2
  • 32
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvarinen A, Oja E,. Independent component analysis: algorithms and applications. Neural Networks 2000; 13: 411-430.
    • (2000) Neural Networks , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 35
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed point algorithms for independent component analysis
    • Hyvarinen A,. Fast and robust fixed point algorithms for independent component analysis. IEEE Transaction on Neural Networks 1999; 10: 626-634.
    • (1999) IEEE Transaction on Neural Networks , vol.10 , pp. 626-634
    • Hyvarinen, A.1
  • 36
    • 30444452650 scopus 로고    scopus 로고
    • Dimension reduction as a deflation method in ICA
    • Zhang K, Chan L,. Dimension reduction as a deflation method in ICA. IEEE Signal Processing Letters 2006; 13: 45-48.
    • (2006) IEEE Signal Processing Letters , vol.13 , pp. 45-48
    • Zhang, K.1    Chan, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.