메뉴 건너뛰기




Volumn 16, Issue 6, 2016, Pages

Tool condition monitoring and remaining useful life prognostic based on awireless sensor in dry milling operations

Author keywords

Neuro fuzzy network (NFN); Remaining useful life (RUL); Tool condition monitoring (TCM); Wavelet analysis; Wavelet packet transform (WPT); Wireless sensor

Indexed keywords

BACKPROPAGATION; CUTTING TOOLS; FUZZY INFERENCE; FUZZY LOGIC; FUZZY NEURAL NETWORKS; MILLING (MACHINING); RADIAL BASIS FUNCTION NETWORKS; SIGNAL DENOISING; VIBRATION ANALYSIS; WAVELET ANALYSIS; WEAR OF MATERIALS; WIRELESS SENSOR NETWORKS;

EID: 84971635842     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s16060795     Document Type: Article
Times cited : (134)

References (57)
  • 1
    • 26844518850 scopus 로고    scopus 로고
    • State-of-the-art methods and results in tool condition monitoring: A review
    • Rehorn, A.G.; Jiang, J.; Orban, P.E. State-of-the-art methods and results in tool condition monitoring: A review. Int. J. Adv. Manuf. Technol. 2005, 26, 693–710.
    • (2005) Int. J. Adv. Manuf. Technol. , vol.26 , pp. 693-710
    • Rehorn, A.G.1    Jiang, J.2    Orban, P.E.3
  • 2
    • 64449086323 scopus 로고    scopus 로고
    • Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results
    • Zhu, K.; San Wong, Y.; Hong, G.S. Wavelet analysis of sensor signals for tool condition monitoring: A review and some new results. Int. J. Mach. Tools Manuf. 2009, 49, 537–553.
    • (2009) Int. J. Mach. Tools Manuf , vol.49 , pp. 537-553
    • Zhu, K.1    San Wong, Y.2    Hong, G.S.3
  • 3
    • 0031245008 scopus 로고    scopus 로고
    • Review of machine vision sensors for tool condition monitoring
    • Kurada, S.; Bradley, C. A review of machine vision sensors for tool condition monitoring. Comput. Ind. 1997, 34, 55–72.
    • (1997) Comput. Ind , vol.34 , pp. 55-72
    • Kurada, S.1    Bradley, C.A.2
  • 4
    • 74249109730 scopus 로고    scopus 로고
    • Design of multisensor fusion-based tool condition monitoring system in end milling
    • Cho, S.; Binsaeid, S.; Asfour, S. Design of multisensor fusion-based tool condition monitoring system in end milling. Int. J. Adv. Manuf. Technol. 2010, 46, 681–694.
    • (2010) Int. J. Adv. Manuf. Technol , vol.46 , pp. 681-694
    • Cho, S.1    Binsaeid, S.2    Asfour, S.3
  • 5
    • 84874312616 scopus 로고    scopus 로고
    • A review of flank wear prediction methods for tool condition monitoring in a turning process
    • Siddhpura, A.; Paurobally, R. A review of flank wear prediction methods for tool condition monitoring in a turning process. Int. J. Adv. Manuf. Technol. 2013, 65, 371–393.
    • (2013) Int. J. Adv. Manuf. Technol , vol.65 , pp. 371-393
    • Siddhpura, A.1    Paurobally, R.2
  • 6
    • 0029755708 scopus 로고    scopus 로고
    • Feature extraction and assessment using wavelet packets for monitoring of machining processes
    • Wu, Y.; Du, R. Feature extraction and assessment using wavelet packets for monitoring of machining processes. Mech. Syst. Signal Proc. 1996, 10, 29–53.
    • (1996) Mech. Syst. Signal Proc , vol.10 , pp. 29-53
    • Wu, Y.1    Du, R.2
  • 7
    • 71749106872 scopus 로고    scopus 로고
    • Multidimensional hybrid intelligent method for gear fault diagnosis
    • Lei, Y.; Zuo, M.J.; He, Z.; Zi, Y. A multidimensional hybrid intelligent method for gear fault diagnosis. Expert Syst. Appl. 2010, 37, 1419–1430.
    • (2010) Expert Syst. Appl , vol.37 , pp. 1419-1430
    • Lei, Y.1    Zuo, M.J.2    He, Z.3    Zi, Y.A.4
  • 8
    • 46649100092 scopus 로고    scopus 로고
    • Cutting force denoising in micro-milling tool condition monitoring
    • Zhu, K.; Hong, G.S.; Wong, Y.S.; Wang, W. Cutting force denoising in micro-milling tool condition monitoring. Int. J. Prod. Res. 2008, 46, 4391–4408.
    • (2008) Int. J. Prod. Res. , vol.46 , pp. 4391-4408
    • Zhu, K.1    Hong, G.S.2    Wong, Y.S.3    Wang, W.4
  • 9
    • 84886556999 scopus 로고    scopus 로고
    • Hybrid learning based gaussian artmap network for tool condition monitoring using selected force harmonic features
    • Wang, G.; Yang, Y.; Guo, Z. Hybrid learning based gaussian artmap network for tool condition monitoring using selected force harmonic features. Sens. Actuator A Phys. 2013, 203, 394–404.
    • (2013) Sens. Actuator a Phys , vol.203 , pp. 394-404
    • Wang, G.1    Yang, Y.2    Guo, Z.3
  • 10
    • 0242269838 scopus 로고    scopus 로고
    • Tool condition monitoring in milling based on cutting forces by a neural network
    • Saglam, H.; Unuvar, A. Tool condition monitoring in milling based on cutting forces by a neural network. Int. J. Prod. Res. 2003, 41, 1519–1532.
    • (2003) Int. J. Prod. Res , vol.41 , pp. 1519-1532
    • Saglam, H.1    Unuvar, A.2
  • 11
    • 34249721512 scopus 로고    scopus 로고
    • Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques
    • Bhattacharyya, P.; Sengupta, D.; Mukhopadhyay, S. Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech. Syst. Signal Proc. 2007, 21, 2665–2683.
    • (2007) Mech. Syst. Signal Proc , vol.21 , pp. 2665-2683
    • Bhattacharyya, P.1    Sengupta, D.2    Mukhopadhyay, S.3
  • 12
    • 84971610624 scopus 로고    scopus 로고
    • Laboratory versus industrial cutting force sensor in tool condition monitoring
    • Jemielniak, K. Laboratory versus industrial cutting force sensor in tool condition monitoring. J. Manuf. Sci. Prod. 2000, 3, 41–47.
    • (2000) J. Manuf. Sci. Prod , vol.3 , pp. 41-47
    • Jemielniak, K.1
  • 13
    • 0033896444 scopus 로고    scopus 로고
    • In-process tool wear estimation in milling using cutting force model
    • Choudhury, S.K.; Rath, S. In-process tool wear estimation in milling using cutting force model. J. Mater. Process. Technol. 2000, 99, 113–119.
    • (2000) J. Mater. Process. Technol , vol.99 , pp. 113-119
    • Choudhury, S.K.1    Rath, S.2
  • 14
    • 84942368629 scopus 로고    scopus 로고
    • Multi-scale statistical signal processing of cutting force in cutting tool condition monitoring
    • Gao, D.; Liao, Z.; Lv, Z.; Lu, Y. Multi-scale statistical signal processing of cutting force in cutting tool condition monitoring. Int. J. Adv. Manuf. Technol. 2015, 80, 1843–1853.
    • (2015) Int. J. Adv. Manuf. Technol , vol.80 , pp. 1843-1853
    • Gao, D.1    Liao, Z.2    Lv, Z.3    Lu, Y.4
  • 15
    • 84901400302 scopus 로고    scopus 로고
    • Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring
    • Freyer, B.H.; Heyns, P.S.; Theron, N.J. Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. J. Intell. Manuf. 2014, 25, 473–487.
    • (2014) J. Intell. Manuf , vol.25 , pp. 473-487
    • Freyer, B.H.1    Heyns, P.S.2    Theron, N.J.3
  • 16
    • 79951810157 scopus 로고    scopus 로고
    • Force-torque based on-line tool wear estimation system for CNC milling of inconel 718 using neural networks
    • Kaya, B.; Oysu, C.; Ertunc, H.M. Force-torque based on-line tool wear estimation system for CNC milling of inconel 718 using neural networks. Adv. Eng. Softw. 2011, 42, 76–84.
    • (2011) Adv. Eng. Softw , vol.42 , pp. 76-84
    • Kaya, B.1    Oysu, C.2    Ertunc, H.M.3
  • 17
    • 42149158289 scopus 로고    scopus 로고
    • Monitoring cutting tool operation and condition with a magnetoelastic rate of change of torque sensor
    • Garshelis, I.J.; Kari, R.J.; Tollens, S.P.L.; Cuseo, J.M. Monitoring cutting tool operation and condition with a magnetoelastic rate of change of torque sensor. J. Appl. Phys. 2008, 103, 07E908.
    • (2008) J. Appl. Phys , vol.103
    • Garshelis, I.J.1    Kari, R.J.2    Tollens, S.P.L.3    Cuseo, J.M.4
  • 19
    • 0033684356 scopus 로고    scopus 로고
    • Wavelet packet feature extraction for vibration monitoring
    • Yen, G.G.; Lin, K.C. Wavelet packet feature extraction for vibration monitoring. IEEE Trans. Ind. Electron. 2000, 47, 650–667.
    • (2000) IEEE Trans. Ind. Electron , vol.47 , pp. 650-667
    • Yen, G.G.1    Lin, K.C.2
  • 20
    • 77955595295 scopus 로고    scopus 로고
    • Fuzzy Radial Basis Function (FRBF) network based tool condition monitoring system using vibration signals
    • Patra, K.; Pal, S.K.; Bhattacharyya, K. Fuzzy Radial Basis Function (FRBF) network based tool condition monitoring system using vibration signals. Mach. Sci. Technol. 2010, 14, 280–300.
    • (2010) Mach. Sci. Technol , vol.14 , pp. 280-300
    • Patra, K.1    Pal, S.K.2    Bhattacharyya, K.3
  • 21
    • 33847050322 scopus 로고    scopus 로고
    • Tool condition monitoring in milling using vibration analysis
    • Yesilyurt, I.; Ozturk, H. Tool condition monitoring in milling using vibration analysis. Int. J. Prod. Res. 2007, 45, 1013–1028.
    • (2007) Int. J. Prod. Res , vol.45 , pp. 1013-1028
    • Yesilyurt, I.1    Ozturk, H.2
  • 23
    • 84893249030 scopus 로고    scopus 로고
    • Vibration sensor based tool condition monitoring using v support vector machine and locality preserving projection
    • Wang, G.F.; Yang, Y.W.; Zhang, Y.C.; Xie, Q.L. Vibration sensor based tool condition monitoring using v support vector machine and locality preserving projection. Sens. Actuator A Phys. 2014, 209, 24–32.
    • (2014) Sens. Actuator a Phys , vol.209 , pp. 24-32
    • Wang, G.F.1    Yang, Y.W.2    Zhang, Y.C.3    Xie, Q.L.4
  • 24
    • 84883491942 scopus 로고    scopus 로고
    • Cutting tool condition monitoring by analyzing surface roughness, work piece vibration and volume of metal removed for AISI 1040 steel in boring
    • Rao, K.V.; Murthy, B.S.N.; Rao, N.M. Cutting tool condition monitoring by analyzing surface roughness, work piece vibration and volume of metal removed for AISI 1040 steel in boring. Measurement 2013, 46, 4075–4084.
    • (2013) Measurement , vol.46 , pp. 4075-4084
    • Rao, K.V.1    Murthy, B.S.N.2    Rao, N.M.3
  • 25
    • 52649150350 scopus 로고    scopus 로고
    • Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system
    • Zhang, J.Z.; Chen, J.C. Tool condition monitoring in an end-milling operation based on the vibration signal collected through a microcontroller-based data acquisition system. Int. J. Adv. Manuf. Technol. 2008, 39, 118–128.
    • (2008) Int. J. Adv. Manuf. Technol , vol.39 , pp. 118-128
    • Zhang, J.Z.1    Chen, J.C.2
  • 26
    • 1342329898 scopus 로고    scopus 로고
    • Identification of feature set for effective tool condition monitoring by acoustic emission sensing
    • Sun, J.; Hong, G.S.; Rahman, M.; Wong, Y.S. Identification of feature set for effective tool condition monitoring by acoustic emission sensing. Int. J. Prod. Res. 2004, 42, 901–918.
    • (2004) Int. J. Prod. Res. , vol.42 , pp. 901-918
    • Sun, J.1    Hong, G.S.2    Rahman, M.3    Wong, Y.S.4
  • 27
    • 84886087246 scopus 로고    scopus 로고
    • Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling
    • Ren, Q.; Balazinski, M.; Baron, L.; Jemielniak, K.; Botez, R.; Achiche, S. Type-2 fuzzy tool condition monitoring system based on acoustic emission in micromilling. Inf. Sci. 2014, 255, 121–134.
    • (2014) Inf. Sci , vol.255 , pp. 121-134
    • Ren, Q.1    Balazinski, M.2    Baron, L.3    Jemielniak, K.4    Botez, R.5    Achiche, S.6
  • 28
    • 34547372974 scopus 로고    scopus 로고
    • Acoustic emission method for tool condition monitoring based on wavelet analysis
    • Chen, X.; Li, B. Acoustic emission method for tool condition monitoring based on wavelet analysis. Int. J. Adv. Manuf. Technol. 2007, 33, 968–976.
    • (2007) Int. J. Adv. Manuf. Technol , vol.33 , pp. 968-976
    • Chen, X.1    Li, B.2
  • 30
    • 84877613286 scopus 로고    scopus 로고
    • In-process tool condition monitoring using acoustic emission sensor in microendmilling
    • Prakash, M.; Kanthababu, M. In-process tool condition monitoring using acoustic emission sensor in microendmilling. Mach. Sci. Technol. 2013, 17, 209–227.
    • (2013) Mach. Sci. Technol , vol.17 , pp. 209-227
    • Prakash, M.1    Kanthababu, M.2
  • 31
    • 84870882774 scopus 로고    scopus 로고
    • Tool condition monitoring using acoustic emission, surface roughness and growing cell structures neural network
    • Pai, S.; Nagabhushana, T.N.; Rao, R.B.K.N. Tool condition monitoring using acoustic emission, surface roughness and growing cell structures neural network. Mach. Sci. Technol. 2012, 16, 653–676.
    • (2012) Mach. Sci. Technol , vol.16 , pp. 653-676
    • Pai, S.1    Nagabhushana, T.N.2    Rao, R.3
  • 34
    • 84860461686 scopus 로고    scopus 로고
    • Estimation of milling tool temperature considering coolant and wear
    • Kuo, H.-Y.; Meyer, K.; Lindle, R.; Ni, J. Estimation of milling tool temperature considering coolant and wear. J. Manuf. Sci. 2012, 134, 1–8.
    • (2012) J. Manuf. Sci. , vol.134 , pp. 1-8
    • Kuo, H.-Y.1    Meyer, K.2    Lindle, R.3    Ni, J.4
  • 35
    • 7744225044 scopus 로고    scopus 로고
    • Fuzzy estimation of feed-cutting force from current measurement—A case study on intelligent tool wear condition monitoring
    • Li, X.L.; Li, H.X.; Guan, X.P.; Du, R. Fuzzy estimation of feed-cutting force from current measurement—A case study on intelligent tool wear condition monitoring. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 2004, 34, 506–512.
    • (2004) IEEE Trans. Syst. Man Cybern. C Appl. Rev , vol.34 , pp. 506-512
    • Li, X.L.1    Li, H.X.2    Guan, X.P.3    Du, R.4
  • 36
    • 84894524789 scopus 로고    scopus 로고
    • Tool condition monitoring of single-point dresser using acoustic emission and neural networks models
    • Martins, C.H.; Aguiar, P.R.; Frech, A.; Bianchi, E.C. Tool condition monitoring of single-point dresser using acoustic emission and neural networks models. IEEE Trans. Instrum. Meas. 2014, 63, 667–679.
    • (2014) IEEE Trans. Instrum. Meas. , vol.63 , pp. 667-679
    • Martins, C.H.1    Aguiar, P.R.2    Frech, A.3    Bianchi, E.C.4
  • 37
    • 56749151072 scopus 로고    scopus 로고
    • Estimation of tool wear based on adaptive sensor fusion of force and power in face milling
    • Bhattacharyya, P.; Sengupta, D. Estimation of tool wear based on adaptive sensor fusion of force and power in face milling. Int. J. Prod. Res. 2009, 47, 817–833.
    • (2009) Int. J. Prod. Res. , vol.47 , pp. 817-833
    • Bhattacharyya, P.1    Sengupta, D.2
  • 38
    • 84855687144 scopus 로고    scopus 로고
    • Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill
    • Huang, P.; Li, J.; Sun, J.; Ge, M. Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill. Int. J. Adv. Manuf. Technol. 2012, 58, 153–160.
    • (2012) Int. J. Adv. Manuf. Technol , vol.58 , pp. 153-160
    • Huang, P.1    Li, J.2    Sun, J.3    Ge, M.4
  • 39
    • 0034174159 scopus 로고    scopus 로고
    • On-line metal cutting tool condition monitoring. I: Force and vibration analyses
    • Dimla, D.E.; Lister, P.M. On-line metal cutting tool condition monitoring. I: Force and vibration analyses. Int. J. Mach. Tools Manuf. 2000, 40, 739–768.
    • (2000) Int. J. Mach. Tools Manuf , vol.40 , pp. 739-768
    • Dimla, D.E.1    Lister, P.M.2
  • 40
    • 80051776544 scopus 로고    scopus 로고
    • Application of wavelet transform of acoustic emission and cutting force signals for tool condition monitoring in rough turning of Inconel 625
    • Jemielniak, K.; Kossakowska, J.; Urbanski, T. Application of wavelet transform of acoustic emission and cutting force signals for tool condition monitoring in rough turning of Inconel 625. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2011, 225, 123–129.
    • (2011) Proc. Inst. Mech. Eng. B J. Eng. Manuf. , vol.225 , pp. 123-129
    • Jemielniak, K.1    Kossakowska, J.2    Urbanski, T.3
  • 44
    • 70349619163 scopus 로고    scopus 로고
    • Industrial wireless sensor networks: Challenges, design principles, and technical approaches
    • Gungor, V.C.; Hancke, G.P. Industrial wireless sensor networks: Challenges, design principles, and technical approaches. IEEE Trans. Ind. Electron. 2009, 56, 4258–4265.
    • (2009) IEEE Trans. Ind. Electron , vol.56 , pp. 4258-4265
    • Gungor, V.C.1    Hancke, G.P.2
  • 46
    • 84971590950 scopus 로고    scopus 로고
    • (accessed on 8 April 2016)
    • Kruse, R. Fuzzy Neural Network. Available online: http://www.scholarpedia.org/article/Fuzzy_neural_network (accessed on 8 April 2016).
    • Fuzzy Neural Network
    • Kruse, R.1
  • 50
    • 84920806274 scopus 로고    scopus 로고
    • A novel greenhouse control system based on fuzzy neural network
    • Trans Tech Publications Inc.: Pfaffikon, Switzerland
    • Zhang, X.Y. A novel greenhouse control system based on fuzzy neural network. In Applied Mechanics and Materials; Trans Tech Publications Inc.: Pfaffikon, Switzerland, 2014; Volume 668–669, pp. 415–418.
    • (2014) Applied Mechanics and Materials , vol.668-669 , pp. 415-418
    • Zhang, X.Y.1
  • 51
    • 84971606651 scopus 로고    scopus 로고
    • (accessed on 8 April 2016)
    • AnytySEE-Mac-Manual. Available online: http://www.3r.com.cn/smsxz/&downloadcategoryid=12&isMode=false.html (accessed on 8 April 2016).
  • 52
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627.
    • (1995) IEEE Trans. Inf. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 53
    • 84971606661 scopus 로고    scopus 로고
    • (accessed on 8 April 2016)
    • Wavelet Packet Analysis. Available online: http://cn.mathworks.com/help/wavelet/gs/wavelet-packetanalysis.html?searchHighlight=wavelet%20packet (accessed on 8 April 2016).
  • 55
    • 84971606660 scopus 로고    scopus 로고
    • (accessed on 23 March 2016)
    • PHM Society Conference Data Challenge. Available online: https://www.phmsociety.org/competition/ phm/10 (accessed on 23 March 2016).
  • 56
    • 77958062360 scopus 로고    scopus 로고
    • Fuzzy regression modeling for tool performance prediction and degradation detection
    • Li, X.; Er, M.J.; Lim, B.; Zhou, J.; Gan, O.; Rutkowski, L. Fuzzy regression modeling for tool performance prediction and degradation detection. Int. J. Neural Syst. 2010, 20, 405–419
    • (2010) Int. J. Neural Syst , vol.20 , pp. 405-419
    • Li, X.1    Er, M.J.2    Lim, B.3    Zhou, J.4    Gan, O.5    Rutkowski, L.6
  • 57
    • 84949292618 scopus 로고    scopus 로고
    • Abnormal condition monitoring of workpieces based on RFID for wisdom manufacturing workshops
    • Zhang, C.; Yao, X.; Zhang, J. Abnormal condition monitoring of workpieces based on RFID for wisdom manufacturing workshops. Sensors 2015, 15, 30165–30186.
    • (2015) Sensors , vol.15 , pp. 30165-30186
    • Zhang, C.1    Yao, X.2    Zhang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.