-
1
-
-
58049190180
-
Rotating machinery prognostics: State of the art, challenges and opportunities
-
Apr.
-
A. Heng, S. Zhang, A. C. C. Tan, and J. Mathew, "Rotating machinery prognostics: State of the art, challenges and opportunities," Mech. Syst. Signal Process., vol. 23, no. 3, pp. 724-739, Apr. 2009.
-
(2009)
Mech. Syst. Signal Process.
, vol.23
, Issue.3
, pp. 724-739
-
-
Heng, A.1
Zhang, S.2
Tan, A.C.C.3
Mathew, J.4
-
2
-
-
0034266703
-
Stochastic prognostics for rolling element bearings
-
Sep.
-
Y. Li, T. R. Kurfess, and S. Y. Liang, "Stochastic prognostics for rolling element bearings," Mech. Syst. Signal Process., vol. 14, no. 5, pp. 747- 762, Sep. 2000.
-
(2000)
Mech. Syst. Signal Process.
, vol.14
, Issue.5
, pp. 747-762
-
-
Li, Y.1
Kurfess, T.R.2
Liang, S.Y.3
-
3
-
-
0036753156
-
Damage mechanics approach for bearing lifetime prognostics
-
DOI 10.1006/mssp.2002.1483
-
J. Qiu, B. B. Set, S. Y. Liang, and C. Zhang, "Damage mechanics approach for bearing life time prognostics," Mech. Syst. Signal Process., vol. 16, no. 5, pp. 817-829, Sep. 2002. (Pubitemid 35263677)
-
(2002)
Mechanical Systems and Signal Processing
, vol.16
, Issue.5
, pp. 817-829
-
-
Qiu, J.1
Seth, B.B.2
Liang, S.Y.3
Zhang, C.4
-
4
-
-
17644398210
-
Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics
-
DOI 10.1016/j.ymssp.2004.06.007, PII S0888327004000901
-
C. J. Li and H. Lee, "Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics," Mech. Syst. Signal Process., vol. 19, no. 4, pp. 836-846, Jul. 2005. (Pubitemid 40556437)
-
(2005)
Mechanical Systems and Signal Processing
, vol.19
, Issue.4
, pp. 836-846
-
-
Li, C.J.1
Lee, H.2
-
5
-
-
9744242805
-
A prognostic algorithm for machine performance assessment and its application
-
Dec.
-
J. Yan, M. Koc, and J. Lee, "A prognostic algorithm for machine performance assessment and its application," Prod. Planning Control, vol. 15, no. 8, pp. 796-801, Dec. 2004.
-
(2004)
Prod. Planning Control
, vol.15
, Issue.8
, pp. 796-801
-
-
Yan, J.1
Koc, M.2
Lee, J.3
-
6
-
-
3943070430
-
A dynamical systems approach to failure prognosis
-
D. Chelidze and J. P. Cusumano, "A dynamical systems approach to failure prognosis," ASME J. Vib. Acoust., vol. 126, no. 1, pp. 2-8, 2004.
-
(2004)
ASME J. Vib. Acoust.
, vol.126
, Issue.1
, pp. 2-8
-
-
Chelidze, D.1
Cusumano, J.P.2
-
7
-
-
77958041293
-
Current status of machine prognostics in condition-based maintenance: A review
-
Sep.
-
Y. Peng, M. Dong, and M. Zuo, "Current status of machine prognostics in condition-based maintenance: A review," Int. J. Adv. Manuf. Technol., vol. 50, no. 1-4, pp. 297-313, Sep. 2010.
-
(2010)
Int. J. Adv. Manuf. Technol.
, vol.50
, Issue.1-4
, pp. 297-313
-
-
Peng, Y.1
Dong, M.2
Zuo, M.3
-
8
-
-
35948948303
-
Residual life predictions for ball bearing based on neural networks
-
R. Q. Huang and L. F. Xi, "Residual life predictions for ball bearing based on neural networks," Chin. J. Mech. Eng., vol. 43, no. 10, pp. 137-143, 2007.
-
(2007)
Chin. J. Mech. Eng.
, vol.43
, Issue.10
, pp. 137-143
-
-
Huang, R.Q.1
Xi, L.F.2
-
9
-
-
38149033827
-
A neural network degradation model for computing and updating residual life distributions
-
Jan.
-
N. Z. Gebraeel and M. A. Lawley, "A neural network degradation model for computing and updating residual life distributions," IEEE Trans. Autom. Sci. Eng., vol. 5, no. 1, pp. 154-163, Jan. 2008.
-
(2008)
IEEE Trans. Autom. Sci. Eng.
, vol.5
, Issue.1
, pp. 154-163
-
-
Gebraeel, N.Z.1
Lawley, M.A.2
-
10
-
-
47549119341
-
Dynamic Bayesian network based prognosis in machining processes
-
Jun.
-
M. Dong and Z. B. Yang, "Dynamic Bayesian network based prognosis in machining processes," J. Shanghai Jiaotong Univ., vol. 13, no. 3, pp. 318- 322, Jun. 2008.
-
(2008)
J. Shanghai Jiaotong Univ.
, vol.13
, Issue.3
, pp. 318-322
-
-
Dong, M.1
Yang, Z.B.2
-
11
-
-
0034215428
-
Condition-based maintenance of machines using hidden Markov models
-
Jul.
-
C. Bunks, D. McCarthy, and T. Al-Ani, "Condition-based maintenance of machines using hidden Markov models," Mech. Syst. Signal Process., vol. 14, no. 4, pp. 597-612, Jul. 2000.
-
(2000)
Mech. Syst. Signal Process.
, vol.14
, Issue.4
, pp. 597-612
-
-
Bunks, C.1
McCarthy, D.2
Al-Ani, T.3
-
12
-
-
33748773892
-
Equipment health diagnosis and prognosis using hidden semi-Markov models
-
DOI 10.1007/s00170-005-0111-0
-
M. Dong, D. He, P. Banerjee, and J. Keller, "Equipment health diagnosis and prognosis using hidden semi-Markov models," Int. J. Adv. Manuf. Technol., vol. 30, no. 7/8, pp. 738-749, Oct. 2006. (Pubitemid 44411203)
-
(2006)
International Journal of Advanced Manufacturing Technology
, vol.30
, Issue.7-8
, pp. 738-749
-
-
Dong, M.1
He, D.2
Banerjee, P.3
Keller, J.4
-
13
-
-
33845912984
-
Failure event prediction using the Cox proportional hazard model driven by frequent failure signatures
-
DOI 10.1080/07408170600847168, PII N7V01L0506474825
-
Z. G. Li, S. Zhou, S. Choubey, and C. Sievenpiper, "Failure event prediction using the Cox proportional hazard model driven by frequent failure signatures," IIE Trans., vol. 39, no. 3, pp. 303-315, Mar. 2007. (Pubitemid 46024143)
-
(2007)
IIE Transactions (Institute of Industrial Engineers)
, vol.39
, Issue.3
, pp. 303-315
-
-
Li, Z.1
Zhou, S.2
Choubey, S.3
Sievenpiper, C.4
-
14
-
-
33749317013
-
The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments
-
Oct.
-
N. El-Sheimy, K. Chiang, and A. Noureldin, "The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments," IEEE Trans. Instrum. Meas., vol. 55, no. 5, pp. 1608-1615, Oct. 2006.
-
(2006)
IEEE Trans. Instrum. Meas.
, vol.55
, Issue.5
, pp. 1608-1615
-
-
El-Sheimy, N.1
Chiang, K.2
Noureldin, A.3
-
15
-
-
0037345899
-
Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
-
Mar.
-
B. Samanta and K. Al-Balushi, "Artificial neural network based fault diagnostics of rolling element bearings using time-domain features," Mech. Syst. Signal Process., vol. 17, no. 2, pp. 317-328, Mar. 2003.
-
(2003)
Mech. Syst. Signal Process.
, vol.17
, Issue.2
, pp. 317-328
-
-
Samanta, B.1
Al-Balushi, K.2
-
16
-
-
33947363928
-
Induction machine condition monitoring using neural network modeling
-
DOI 10.1109/TIE.2006.888786
-
H. Su and K. T. Chong, "Induction machine condition monitoring using neural network modeling," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 241-249, Feb. 2007. (Pubitemid 46444021)
-
(2007)
IEEE Transactions on Industrial Electronics
, vol.54
, Issue.1
, pp. 241-249
-
-
Su, H.1
Chong, K.T.2
-
17
-
-
0344876018
-
Classification of audio radar signals using radial basis function neural networks
-
Dec.
-
T. McConaghy, H. Leung, É. Bossé, and V. Varadan, "Classification of audio radar signals using radial basis function neural networks," IEEE Trans. Instrum. Meas., vol. 52, no. 6, pp. 1771-1779, Dec. 2003.
-
(2003)
IEEE Trans. Instrum. Meas.
, vol.52
, Issue.6
, pp. 1771-1779
-
-
McConaghy, T.1
Leung, H.2
Bossé, E.3
Varadan, V.4
-
18
-
-
37749042253
-
Detection and classification of power quality disturbances using s-transform and probabilistic neural network
-
Jan.
-
S. Mishra, C. N. Bhende, and B. K. Panigrahi, "Detection and classification of power quality disturbances using s-transform and probabilistic neural network," IEEE Trans. Power Del., vol. 23, no. 1, pp. 280-287, Jan. 2008.
-
(2008)
IEEE Trans. Power Del.
, vol.23
, Issue.1
, pp. 280-287
-
-
Mishra, S.1
Bhende, C.N.2
Panigrahi, B.K.3
-
19
-
-
42549166433
-
Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection
-
DOI 10.1109/TIM.2007.913803
-
A. I. Moustapha and R. R. Selmic, "Wireless sensor network modeling using modified recurrent neural networks: Application to fault detection," IEEE Trans. Instrum. Meas., vol. 57, no. 5, pp. 981-988, May 2008. (Pubitemid 351583514)
-
(2008)
IEEE Transactions on Instrumentation and Measurement
, vol.57
, Issue.5
, pp. 981-988
-
-
Moustapha, A.I.1
Selmic, R.R.2
-
20
-
-
0036859376
-
Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory
-
DOI 10.1109/TNN.2002.804316
-
O. Castillo and P. Melin, "Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic and fractal theory," IEEE Trans. Neural Netw., vol. 13, no. 6, pp. 1395-1408, Nov. 2002. (Pubitemid 35428527)
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.6
, pp. 1395-1408
-
-
Castillo, O.1
Melin, P.2
-
21
-
-
0032997744
-
Rolling learning-prediction of product formation in bioprocesses
-
DOI 10.1016/S0168-1656(99)00002-4, PII S0168165699000024
-
J. Yuan and P. Vanrolleghem, "Rolling learning-prediction of product formation in bioprocesses," J. Biotechnol., vol. 69, no. 1, pp. 47-62, Mar. 1999. (Pubitemid 29121983)
-
(1999)
Journal of Biotechnology
, vol.69
, Issue.1
, pp. 47-62
-
-
Yuan, J.Q.1
Vanrolleghem, P.A.2
-
22
-
-
0032643704
-
Prediction of machine deterioration using vibration based fault trends and recurrent neural networks
-
P. Tse and D. Atherton, "Prediction of machine deterioration using vibration based fault trends and recurrent neural networks," ASME J. Vib. Acoust., vol. 121, no. 3, pp. 355-362, 1999.
-
(1999)
ASME J. Vib. Acoust.
, vol.121
, Issue.3
, pp. 355-362
-
-
Tse, P.1
Atherton, D.2
-
23
-
-
0033721855
-
Prognosis of remaining bearing life using neural networks
-
Y. Shao and K. Nezu, "Prognosis of remaining bearing life using neural networks," Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., vol. 214, pt. I, no. 3, pp. 217-230, 2000.
-
(2000)
Proc. Inst. Mech. Eng. I, J. Syst. Control Eng.
, vol.214
, Issue.3 PART 1
, pp. 217-230
-
-
Shao, Y.1
Nezu, K.2
-
24
-
-
0035297549
-
Fatigue failure progression in ball bearings
-
DOI 10.1115/1.1308013
-
M. Kotzalas and T. Harris, "Fatigue failure progression in ball bearings," ASME J. Tribol., vol. 123, pp. 238-242, 2001. (Pubitemid 32693292)
-
(2001)
Journal of Tribology
, vol.123
, Issue.2
, pp. 238-242
-
-
Kotzalas, M.N.1
Harris, T.A.2
-
25
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
R. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, no. 2, pp. 270- 280, 1989.
-
(1989)
Neural Comput.
, vol.1
, Issue.2
, pp. 270-280
-
-
Williams, R.1
Zipser, D.2
-
27
-
-
79951609325
-
-
Torrington Bearing Catalog.
-
Torrington Bearing Catalog. [Online]. Available: http://www.timken.com/ industries/torrington/catalog/pdf/fafnir/wide-inn.pdf
-
-
-
-
28
-
-
0019079288
-
The signature analysis of sonic bearing vibration
-
Nov.
-
S. Braun, "The signature analysis of sonic bearing vibration," IEEE Trans. Sonics Ultrason., vol. SU-27, no. 6, pp. 317-327, Nov. 1980.
-
(1980)
IEEE Trans. Sonics Ultrason.
, vol.SU-27
, Issue.6
, pp. 317-327
-
-
Braun, S.1
-
29
-
-
0031213416
-
New statistical moments for diagnostics of rolling element bearings
-
F. Honarvar and H. Martin, "New statistical moments for diagnostics of rolling element bearings," ASME J. Manuf. Sci. Eng., vol. 119, pp. 425- 432, 1997. (Pubitemid 127680448)
-
(1997)
Journal of Manufacturing Science and Engineering, Transactions of the ASME
, vol.119
, Issue.3
, pp. 425-432
-
-
Honarvar, F.1
Martin, H.R.2
-
30
-
-
0032632751
-
Adaptive prognostics for rolling element bearing condition
-
Jan.
-
Y. Li, S. Billington, C. Zhang, T. Kurfess, S. Danyluk, and S. Liang, "Adaptive prognostics for rolling element bearing condition," Mech. Syst. Signal Process., vol. 13, no. 1, pp. 103-113, Jan. 1999.
-
(1999)
Mech. Syst. Signal Process.
, vol.13
, Issue.1
, pp. 103-113
-
-
Li, Y.1
Billington, S.2
Zhang, C.3
Kurfess, T.4
Danyluk, S.5
Liang, S.6
-
31
-
-
69249235484
-
Energy-based feature extraction for defect diagnosis in rotary machines
-
Sep.
-
R. Yan and R. Gao, "Energy-based feature extraction for defect diagnosis in rotary machines," IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 3130- 3139, Sep. 2009.
-
(2009)
IEEE Trans. Instrum. Meas.
, vol.58
, Issue.9
, pp. 3130-3139
-
-
Yan, R.1
Gao, R.2
|