메뉴 건너뛰기




Volumn 45, Issue , 2017, Pages 47-58

Multisensory fusion based virtual tool wear sensing for ubiquitous manufacturing

Author keywords

Feature fusion; Tool wear estimation; Virtual sensing

Indexed keywords

COMPUTER CONTROL SYSTEMS; CONDITION MONITORING; COST EFFECTIVENESS; DATA FUSION; MANUFACTURE; MILLING MACHINES; PRINCIPAL COMPONENT ANALYSIS; REGRESSION ANALYSIS; RELIABILITY; UBIQUITOUS COMPUTING; WEAR OF MATERIALS;

EID: 85006371048     PISSN: 07365845     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rcim.2016.05.010     Document Type: Article
Times cited : (188)

References (43)
  • 1
    • 78650019759 scopus 로고    scopus 로고
    • Ubiquitous computing: an overview of technology impacts
    • [1] Friedewald, M., Raabe, O., Ubiquitous computing: an overview of technology impacts. Telemat. Inform. 28 (2011), 55–65.
    • (2011) Telemat. Inform. , vol.28 , pp. 55-65
    • Friedewald, M.1    Raabe, O.2
  • 2
    • 84922369742 scopus 로고    scopus 로고
    • Ubiquitous manufacturing: overview, framework, and further research directions
    • [2] Dubey, R., Gunasekaran, A., Chakrabarty, A., Ubiquitous manufacturing: overview, framework, and further research directions. Int. J. Comput. Integr. Manuf., 2015, 10.1080/0951192X.2014.1003411.
    • (2015) Int. J. Comput. Integr. Manuf.
    • Dubey, R.1    Gunasekaran, A.2    Chakrabarty, A.3
  • 3
    • 79551680853 scopus 로고    scopus 로고
    • Agent-based smart objects management system for real-time ubiquitous manufacturing
    • [3] Zhang, Y., Huang, G.Q., Qu, T., Ho, O., Sun, S., Agent-based smart objects management system for real-time ubiquitous manufacturing. Robot. Comput.-Integr. Manuf. 27 (2011), 538–549.
    • (2011) Robot. Comput.-Integr. Manuf. , vol.27 , pp. 538-549
    • Zhang, Y.1    Huang, G.Q.2    Qu, T.3    Ho, O.4    Sun, S.5
  • 4
    • 84906538080 scopus 로고    scopus 로고
    • Multi-agent based real-time production scheduling method for radio frequency identification enabled ubiquitous shopfloor environment
    • [4] Zhang, Y., Huang, G.Q., Sun, S., Yang, T., Multi-agent based real-time production scheduling method for radio frequency identification enabled ubiquitous shopfloor environment. Comput. Ind. Eng. 76 (2014), 89–97.
    • (2014) Comput. Ind. Eng. , vol.76 , pp. 89-97
    • Zhang, Y.1    Huang, G.Q.2    Sun, S.3    Yang, T.4
  • 5
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • [5] Jardine, A.K.S., Lin, D., Banjevic, D., A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20 (2016), 1483–1510.
    • (2016) Mech. Syst. Signal Process. , vol.20 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 6
    • 0031245008 scopus 로고    scopus 로고
    • A review of machine vision sensors for tool condition monitoring
    • [6] Kurada, S., Bradley, C., A review of machine vision sensors for tool condition monitoring. Comput. Ind. 34 (1997), 55–72.
    • (1997) Comput. Ind. , vol.34 , pp. 55-72
    • Kurada, S.1    Bradley, C.2
  • 8
    • 85027957358 scopus 로고    scopus 로고
    • Ubiquitous conceptual design of a ubiquitous application: a textile SME case study for real time manufacturing monitoring
    • [8] Mejia-Gutierrez, R., Osorio-Gomez, G., Rios-Zapata, D., Zuluaga-Holguin, D., Ubiquitous conceptual design of a ubiquitous application: a textile SME case study for real time manufacturing monitoring. Comput.-Aided Des. 59 (2015), 214–228.
    • (2015) Comput.-Aided Des. , vol.59 , pp. 214-228
    • Mejia-Gutierrez, R.1    Osorio-Gomez, G.2    Rios-Zapata, D.3    Zuluaga-Holguin, D.4
  • 9
    • 84864353445 scopus 로고    scopus 로고
    • Ubiquitous Geo-sensing for context-aware analysis: exploring relationships between environmental and human dynamics
    • [9] Sagl, G., Blaschke, T., Beinat, E., Resch, B., Ubiquitous Geo-sensing for context-aware analysis: exploring relationships between environmental and human dynamics. Sensors 12 (2012), 9800–9822.
    • (2012) Sensors , vol.12 , pp. 9800-9822
    • Sagl, G.1    Blaschke, T.2    Beinat, E.3    Resch, B.4
  • 10
    • 84870505454 scopus 로고    scopus 로고
    • Ubiquitous monitoring of electrical household appliances
    • [10] Lloret, J., Macias, E., Suarez, A., Lacuesta, R., Ubiquitous monitoring of electrical household appliances. Sensors 12 (2012), 15159–15191.
    • (2012) Sensors , vol.12 , pp. 15159-15191
    • Lloret, J.1    Macias, E.2    Suarez, A.3    Lacuesta, R.4
  • 11
    • 84927717737 scopus 로고    scopus 로고
    • Ubiquitous WSN for healthcare: recent advances and future prospects
    • [11] Zhang, Y., Sun, L., Song, H., Cao, X., Ubiquitous WSN for healthcare: recent advances and future prospects. IEEE Internet Things J. 1:4 (2014), 311–318.
    • (2014) IEEE Internet Things J. , vol.1 , Issue.4 , pp. 311-318
    • Zhang, Y.1    Sun, L.2    Song, H.3    Cao, X.4
  • 12
    • 0031125739 scopus 로고    scopus 로고
    • A machine vision system for tool wear assessment
    • [12] Kurada, S., Bradley, C., A machine vision system for tool wear assessment. Tribol. Int. 30:4 (1997), 295–304.
    • (1997) Tribol. Int. , vol.30 , Issue.4 , pp. 295-304
    • Kurada, S.1    Bradley, C.2
  • 13
    • 84878290876 scopus 로고    scopus 로고
    • On-line tool wear measurement for ball-end milling cutter based on machine vision
    • [13] Zhang, C., Zhang, J., On-line tool wear measurement for ball-end milling cutter based on machine vision. Comput. Ind. 64 (2013), 708–719.
    • (2013) Comput. Ind. , vol.64 , pp. 708-719
    • Zhang, C.1    Zhang, J.2
  • 14
    • 84880045869 scopus 로고    scopus 로고
    • Application of digital image processing in tool condition monitoring: a review
    • [14] Dutta, S., Pal, S.K., Mukhopadhyay, S., Sen, R., Application of digital image processing in tool condition monitoring: a review. CIRP J. Manuf. Sci. Technol. 6 (2013), 212–232.
    • (2013) CIRP J. Manuf. Sci. Technol. , vol.6 , pp. 212-232
    • Dutta, S.1    Pal, S.K.2    Mukhopadhyay, S.3    Sen, R.4
  • 15
    • 34848916718 scopus 로고    scopus 로고
    • Sensor fusion for online tool condition monitoring in milling
    • [15] Wang, W.H., Hong, G.S., Wong, Y.S., Zhu, K.P., Sensor fusion for online tool condition monitoring in milling. Int. J. Prod. Res. 45:21 (2007), 5095–5116.
    • (2007) Int. J. Prod. Res. , vol.45 , Issue.21 , pp. 5095-5116
    • Wang, W.H.1    Hong, G.S.2    Wong, Y.S.3    Zhu, K.P.4
  • 16
    • 17844408443 scopus 로고    scopus 로고
    • An overview of data acquisition system for cutting force measuring and optimization in milling
    • [16] Milfelner, M., Cus, F., Balic, J., An overview of data acquisition system for cutting force measuring and optimization in milling. J. Mater. Process. Technol. 164-165 (2005), 1281–1288.
    • (2005) J. Mater. Process. Technol. , vol.164-165 , pp. 1281-1288
    • Milfelner, M.1    Cus, F.2    Balic, J.3
  • 17
    • 79960067557 scopus 로고    scopus 로고
    • Reliability estimation for cutting tools based on logistic regression model using vibration signals
    • [17] Chen, B., Chen, X., Li, B., He, Z., Cao, H., Cai, G., Reliability estimation for cutting tools based on logistic regression model using vibration signals. Mech. Syst. Signal Process. 25 (2011), 2526–2537.
    • (2011) Mech. Syst. Signal Process. , vol.25 , pp. 2526-2537
    • Chen, B.1    Chen, X.2    Li, B.3    He, Z.4    Cao, H.5    Cai, G.6
  • 18
    • 78651282656 scopus 로고    scopus 로고
    • Tool wear monitoring using acoustic emissions by dominant-feature identification
    • [18] Zhou, J., Pang, C.K., Zhong, Z., Lewis, F.L., Tool wear monitoring using acoustic emissions by dominant-feature identification. IEEE Trans. Instrum. Meas. 60:2 (2011), 547–559.
    • (2011) IEEE Trans. Instrum. Meas. , vol.60 , Issue.2 , pp. 547-559
    • Zhou, J.1    Pang, C.K.2    Zhong, Z.3    Lewis, F.L.4
  • 19
    • 84901400302 scopus 로고    scopus 로고
    • Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring
    • [19] Freyer, B.H., Heyns, P.S., Theron, N.J., Comparing orthogonal force and unidirectional strain component processing for tool condition monitoring. J. Intell. Manuf. 25 (2014), 473–487.
    • (2014) J. Intell. Manuf. , vol.25 , pp. 473-487
    • Freyer, B.H.1    Heyns, P.S.2    Theron, N.J.3
  • 20
    • 85027922991 scopus 로고    scopus 로고
    • Investigation about the characterization of machine tool spindle stiffness for intelligent CNC end milling
    • [20] Sarhan, A.A.D., Matsubara, A., Investigation about the characterization of machine tool spindle stiffness for intelligent CNC end milling. Robot. Comput.-Integr. Manuf. 34 (2015), 133–139.
    • (2015) Robot. Comput.-Integr. Manuf. , vol.34 , pp. 133-139
    • Sarhan, A.A.D.1    Matsubara, A.2
  • 21
    • 34548361987 scopus 로고    scopus 로고
    • An approach based on current and sound signals for in-process tool wear monitoring
    • [21] Salgado, D.R., Alonso, F.J., An approach based on current and sound signals for in-process tool wear monitoring. Int. J. Mach. Tools Manuf. 47 (2007), 2140–2152.
    • (2007) Int. J. Mach. Tools Manuf. , vol.47 , pp. 2140-2152
    • Salgado, D.R.1    Alonso, F.J.2
  • 22
    • 0002111519 scopus 로고
    • Soft sensors for process estimation and inferential control
    • [22] Tham, M.T., Montague, G.A., Morris, J.A., Lant, P.A., Soft sensors for process estimation and inferential control. J. Process. Control. 1:1 (1991), 3–14.
    • (1991) J. Process. Control. , vol.1 , Issue.1 , pp. 3-14
    • Tham, M.T.1    Montague, G.A.2    Morris, J.A.3    Lant, P.A.4
  • 24
    • 6944247633 scopus 로고    scopus 로고
    • A model-based virtual sensing approach for the injection molding process
    • [24] Cheng, J.J.W., Chao, T.C., Chang, L.H., Huang, B.F., A model-based virtual sensing approach for the injection molding process. Polym. Eng. Sci. 44:9 (2004), 1605–1614.
    • (2004) Polym. Eng. Sci. , vol.44 , Issue.9 , pp. 1605-1614
    • Cheng, J.J.W.1    Chao, T.C.2    Chang, L.H.3    Huang, B.F.4
  • 25
    • 80053586673 scopus 로고    scopus 로고
    • Virtual sensors for estimation of energy consumption and thermal comfort in buildings with underfloor heating
    • [25] Ploennigs, J., Ahmed, A., Hensel, B., Stack, P., Menzel, K., Virtual sensors for estimation of energy consumption and thermal comfort in buildings with underfloor heating. Adv. Eng. Inform. 25:4 (2011), 688–698.
    • (2011) Adv. Eng. Inform. , vol.25 , Issue.4 , pp. 688-698
    • Ploennigs, J.1    Ahmed, A.2    Hensel, B.3    Stack, P.4    Menzel, K.5
  • 26
    • 84949644531 scopus 로고    scopus 로고
    • Accurate sensorless lead-through programming for lightweight robots in structured environments
    • [26] Ragaglia, M., Zanchettin, A.M., Bascetta, L., Rocco, P., Accurate sensorless lead-through programming for lightweight robots in structured environments. Robot. Comput.-Integr. Manuf. 39 (2016), 9–21.
    • (2016) Robot. Comput.-Integr. Manuf. , vol.39 , pp. 9-21
    • Ragaglia, M.1    Zanchettin, A.M.2    Bascetta, L.3    Rocco, P.4
  • 27
    • 84922568074 scopus 로고    scopus 로고
    • Development of cloud-based automatic virtual metrology system for semiconductor industry
    • [27] Huang, H.C., Lin, Y.C., Hung, M.H., Tu, C.C., Cheng, F.T., Development of cloud-based automatic virtual metrology system for semiconductor industry. Robot. Comput.-Integr. Manuf. 34 (2015), 30–43.
    • (2015) Robot. Comput.-Integr. Manuf. , vol.34 , pp. 30-43
    • Huang, H.C.1    Lin, Y.C.2    Hung, M.H.3    Tu, C.C.4    Cheng, F.T.5
  • 28
    • 79953312888 scopus 로고    scopus 로고
    • A virtual sensor for online fault detection of multitooth-tools
    • [28] Bustillo, A., Correa, M., Renones, A., A virtual sensor for online fault detection of multitooth-tools. Sensors 11 (2011), 2773–2795.
    • (2011) Sensors , vol.11 , pp. 2773-2795
    • Bustillo, A.1    Correa, M.2    Renones, A.3
  • 29
    • 0342855329 scopus 로고    scopus 로고
    • Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks
    • [29] Li, C.J., Tzeng, T.C., Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mech. Syst. Signal Process. 14:6 (2000), 945–957.
    • (2000) Mech. Syst. Signal Process. , vol.14 , Issue.6 , pp. 945-957
    • Li, C.J.1    Tzeng, T.C.2
  • 30
    • 84944315461 scopus 로고    scopus 로고
    • Estimating simulation workload in cloud manufacturing using a classifying artificial neural network ensemble approach
    • [30] Chen, T., Wang, Y.C., Estimating simulation workload in cloud manufacturing using a classifying artificial neural network ensemble approach. Robot. Comput.-Integr. Manuf. 38 (2016), 42–51.
    • (2016) Robot. Comput.-Integr. Manuf. , vol.38 , pp. 42-51
    • Chen, T.1    Wang, Y.C.2
  • 31
    • 33846844788 scopus 로고    scopus 로고
    • Tool wear predictive model based on least squares support vector machines
    • [31] Shi, D., Gindy, N.N., Tool wear predictive model based on least squares support vector machines. Mech. Syst. Signal Process. 21 (2007), 1799–1814.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 1799-1814
    • Shi, D.1    Gindy, N.N.2
  • 32
    • 84925292228 scopus 로고    scopus 로고
    • Health assessment and life prediction of cutting tools based on support vector regression
    • [32] Benkedjouh, T., Medjaher, K., Zerhouni, N., Rechak, S., Health assessment and life prediction of cutting tools based on support vector regression. J. Intell. Manuf. 26 (2015), 213–223.
    • (2015) J. Intell. Manuf. , vol.26 , pp. 213-223
    • Benkedjouh, T.1    Medjaher, K.2    Zerhouni, N.3    Rechak, S.4
  • 33
    • 84862289855 scopus 로고    scopus 로고
    • Tool wear estimation using an analytic fuzzy classifier and support vector machines
    • [33] Brezak, D., Majetic, D., Udiljak, T., Kasac, J., Tool wear estimation using an analytic fuzzy classifier and support vector machines. J. Intell. Manuf. 23 (2012), 797–809.
    • (2012) J. Intell. Manuf. , vol.23 , pp. 797-809
    • Brezak, D.1    Majetic, D.2    Udiljak, T.3    Kasac, J.4
  • 34
    • 33846798101 scopus 로고    scopus 로고
    • Subspace-based gearbox condition monitoring by kernel principal component analysis
    • [34] He, Q., Kong, F., Yan, R., Subspace-based gearbox condition monitoring by kernel principal component analysis. Mech. Syst. Signal Process. 21 (2007), 1755–1772.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 1755-1772
    • He, Q.1    Kong, F.2    Yan, R.3
  • 35
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue
    • [35] Scholkopf, B., Smola, A., Muller, K.R., Nonlinear component analysis as a kernel eigenvalue. Neural Comput. 10 (1998), 1299–1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.R.3
  • 36
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • [36] Roweis, S.T., Saul, L.K., Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000), 2323–2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 37
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • [37] Tenenbaum, J.B., de Silva, V., Langford, J.C., A global geometric framework for nonlinear dimensionality reduction. Science 209 (2000), 2319–2323.
    • (2000) Science , vol.209 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 38
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • [38] Peng, H., Long, F., Ding, C., Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27:8 (2005), 1226–1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 39
    • 85006490697 scopus 로고    scopus 로고
    • The Nature of Statistical Learning Theory
    • Springer New York
    • [39] Vapnik, V.N., The Nature of Statistical Learning Theory. 1999, Springer, New York.
    • (1999)
    • Vapnik, V.N.1
  • 40
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • [40] Widodo, A., Yang, B.S., Support vector machine in machine condition monitoring and fault diagnosis. Mech. Syst. Signal Process. 21 (2007), 2560–2574.
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 41
    • 84868709704 scopus 로고    scopus 로고
    • Current envelope analysis for defect identification and diagnosis in induction motors
    • [41] Wang, J., Liu, S., Gao, R.X., Yan, R., Current envelope analysis for defect identification and diagnosis in induction motors. J. Manuf. Syst. 31:4 (2012), 380–387.
    • (2012) J. Manuf. Syst. , vol.31 , Issue.4 , pp. 380-387
    • Wang, J.1    Liu, S.2    Gao, R.X.3    Yan, R.4
  • 42
    • 84920563661 scopus 로고    scopus 로고
    • Fuzzy neural network modelling for tool wear estimation in dry milling operation
    • Annual Conference of the Prognostics and Health Management Society, San Diego, CA, September 27-October 1,, pp.
    • [42] X. Li, B.S. Lim, J.H. Zhou, S. Huang, S.J. Phua, K.C. Shaw, M.J. Er, Fuzzy neural network modelling for tool wear estimation in dry milling operation. Annual Conference of the Prognostics and Health Management Society, San Diego, CA, September 27-October 1, 2009, pp. 1–11.
    • (2009) , pp. 1-11
    • Li, X.1    Lim, B.S.2    Zhou, J.H.3    Huang, S.4    Phua, S.J.5    Shaw, K.C.6    Er, M.J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.