-
1
-
-
84969930519
-
Cell Cycle: Principles of Control
-
New Science Press
-
1 Morgan, D.O., Cell Cycle: Principles of Control. 2006, New Science Press.
-
(2006)
-
-
Morgan, D.O.1
-
2
-
-
84904049068
-
Preparing a cell for nuclear envelope breakdown: Spatio-temporal control of phosphorylation during mitotic entry
-
2 Alvarez-Fernandez, M., Malumbres, M., Preparing a cell for nuclear envelope breakdown: Spatio-temporal control of phosphorylation during mitotic entry. BioEssays 36 (2014), 757–765.
-
(2014)
BioEssays
, vol.36
, pp. 757-765
-
-
Alvarez-Fernandez, M.1
Malumbres, M.2
-
3
-
-
0035861891
-
A prize for proliferation
-
3 Nasmyth, K., A prize for proliferation. Cell 107 (2001), 689–701.
-
(2001)
Cell
, vol.107
, pp. 689-701
-
-
Nasmyth, K.1
-
4
-
-
84870169302
-
Driving the cell cycle through metabolism
-
4 Cai, L., Tu, B.P., Driving the cell cycle through metabolism. Annu. Rev. Cell Dev. Biol. 28 (2012), 59–87.
-
(2012)
Annu. Rev. Cell Dev. Biol.
, vol.28
, pp. 59-87
-
-
Cai, L.1
Tu, B.P.2
-
5
-
-
70449153173
-
The control of cell division; a review. I. General mechanisms
-
5 Swann, M.M., The control of cell division; a review. I. General mechanisms. Cancer Res. 17 (1957), 727–757.
-
(1957)
Cancer Res.
, vol.17
, pp. 727-757
-
-
Swann, M.M.1
-
6
-
-
0037334009
-
Historical review: an energy reservoir for mitosis, and its productive wake
-
6 Pederson, T., Historical review: an energy reservoir for mitosis, and its productive wake. Trends Biochem. Sci. 28 (2003), 125–129.
-
(2003)
Trends Biochem. Sci.
, vol.28
, pp. 125-129
-
-
Pederson, T.1
-
7
-
-
0014301581
-
Control of cell progression through the mitotic cycle by carbohydrate provision. I. Regulation of cell division in excised plant tissue
-
7 Van't Hof, J., Control of cell progression through the mitotic cycle by carbohydrate provision. I. Regulation of cell division in excised plant tissue. J. Cell Biol. 37 (1968), 773–780.
-
(1968)
J. Cell Biol.
, vol.37
, pp. 773-780
-
-
Van't Hof, J.1
-
8
-
-
0014645034
-
Oxygen uptake during the HeLa cell life cycle and its correlation with macromolecular synthesis
-
8 Robbins, E., Morrill, G.A., Oxygen uptake during the HeLa cell life cycle and its correlation with macromolecular synthesis. J. Cell Biol. 43 (1969), 629–633.
-
(1969)
J. Cell Biol.
, vol.43
, pp. 629-633
-
-
Robbins, E.1
Morrill, G.A.2
-
9
-
-
0014496933
-
Dependence of energy and aerobic metabolism of initiation of DNA synthesis and mitosis by G1 and G2 cells
-
9 Webster, P.L., Hof, J.V., Dependence of energy and aerobic metabolism of initiation of DNA synthesis and mitosis by G1 and G2 cells. Exp. Cell Res. 55 (1969), 88–94.
-
(1969)
Exp. Cell Res.
, vol.55
, pp. 88-94
-
-
Webster, P.L.1
Hof, J.V.2
-
10
-
-
0017153683
-
Aerobic glycolysis during lymphocyte proliferation
-
10 Wang, T., et al. Aerobic glycolysis during lymphocyte proliferation. Nature 261 (1976), 702–705.
-
(1976)
Nature
, vol.261
, pp. 702-705
-
-
Wang, T.1
-
11
-
-
0020453043
-
Energy metabolism and ATP turnover time during the cell cycle of Ehrlich ascites tumour cells
-
11 Skog, S., et al. Energy metabolism and ATP turnover time during the cell cycle of Ehrlich ascites tumour cells. Exp. Cell Res. 141 (1982), 23–29.
-
(1982)
Exp. Cell Res.
, vol.141
, pp. 23-29
-
-
Skog, S.1
-
12
-
-
60749109846
-
Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews
-
12 Malumbres, M., Barbacid, M., Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews. Cancer 9 (2009), 153–166.
-
(2009)
Cancer
, vol.9
, pp. 153-166
-
-
Malumbres, M.1
Barbacid, M.2
-
13
-
-
84923282192
-
On the move: organelle dynamics during mitosis
-
13 Jongsma, M.L., et al. On the move: organelle dynamics during mitosis. Trends Cell Biol. 25 (2015), 112–124.
-
(2015)
Trends Cell Biol.
, vol.25
, pp. 112-124
-
-
Jongsma, M.L.1
-
14
-
-
67749089562
-
A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase
-
14 Mitra, K., et al. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Nat. Acad. Sci. U. S. A. 106 (2009), 11960–11965.
-
(2009)
Proc. Nat. Acad. Sci. U. S. A.
, vol.106
, pp. 11960-11965
-
-
Mitra, K.1
-
15
-
-
84910141948
-
Mitochondrial dynamics and inheritance during cell division, development and disease
-
15 Mishra, P., Chan, D.C., Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15 (2014), 634–646.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 634-646
-
-
Mishra, P.1
Chan, D.C.2
-
16
-
-
79954569219
-
Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability
-
16 Horn, S.R., et al. Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol. Biol. Cell 22 (2011), 1207–1216.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 1207-1216
-
-
Horn, S.R.1
-
17
-
-
77149178775
-
Metabolic control of G1–S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system
-
17 Mandal, S., et al. Metabolic control of G1–S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J. Cell Biol. 188 (2010), 473–479.
-
(2010)
J. Cell Biol.
, vol.188
, pp. 473-479
-
-
Mandal, S.1
-
18
-
-
84874694989
-
Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress
-
18 Qian, W., et al. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J. Cell Sci. 125 (2012), 5745–5757.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 5745-5757
-
-
Qian, W.1
-
19
-
-
84895180426
-
Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition
-
19 Lee, S., et al. Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cell. Mol. Life Sci. 71 (2014), 711–725.
-
(2014)
Cell. Mol. Life Sci.
, vol.71
, pp. 711-725
-
-
Lee, S.1
-
20
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
20 Taguchi, N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282 (2007), 11521–11529.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11521-11529
-
-
Taguchi, N.1
-
21
-
-
80052514798
-
RALA and RALBP1 regulate mitochondrial fission at mitosis
-
21 Kashatus, D.F., et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13 (2011), 1108–1115.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1108-1115
-
-
Kashatus, D.F.1
-
22
-
-
84875273810
-
New insights into the function and regulation of mitochondrial fission
-
22 Otera, H., et al. New insights into the function and regulation of mitochondrial fission. Biochimica et biophysica acta 1833 (2013), 1256–1268.
-
(2013)
Biochimica et biophysica acta
, vol.1833
, pp. 1256-1268
-
-
Otera, H.1
-
23
-
-
84871234101
-
Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5
-
23 Park, Y.Y., Cho, H., Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div., 7, 2012, 25.
-
(2012)
Cell Div.
, vol.7
, pp. 25
-
-
Park, Y.Y.1
Cho, H.2
-
24
-
-
84939146550
-
Mitotic redistribution of the mitochondrial network by Miro and Cenp-F
-
24 Kanfer, G., et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun., 6, 2015, 8015.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8015
-
-
Kanfer, G.1
-
25
-
-
84955151670
-
Accurate concentration control of mitochondria and nucleoids
-
25 Jajoo, R., et al. Accurate concentration control of mitochondria and nucleoids. Science 351 (2016), 169–172.
-
(2016)
Science
, vol.351
, pp. 169-172
-
-
Jajoo, R.1
-
26
-
-
0032112293
-
A genome-wide transcriptional analysis of the mitotic cell cycle
-
26 Cho, R.J., et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2 (1998), 65–73.
-
(1998)
Mol. Cell
, vol.2
, pp. 65-73
-
-
Cho, R.J.1
-
27
-
-
84887621784
-
Metabolic regulation of the cell cycle
-
27 Lee, I.H., Finkel, T., Metabolic regulation of the cell cycle. Curr. Opin. Cell Biol. 25 (2013), 724–729.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 724-729
-
-
Lee, I.H.1
Finkel, T.2
-
28
-
-
8644281106
-
A common set of gene regulatory networks links metabolism and growth inhibition
-
28 Cam, H., et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16 (2004), 399–411.
-
(2004)
Mol. Cell
, vol.16
, pp. 399-411
-
-
Cam, H.1
-
29
-
-
84923188503
-
Emerging links between E2F control and mitochondrial function
-
29 Benevolenskaya, E.V., Frolov, M.V., Emerging links between E2F control and mitochondrial function. Cancer Res. 75 (2015), 619–623.
-
(2015)
Cancer Res.
, vol.75
, pp. 619-623
-
-
Benevolenskaya, E.V.1
Frolov, M.V.2
-
30
-
-
0034724861
-
Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c
-
30 Herzig, R.P., et al. Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c. J. Biol. Chem. 275 (2000), 13134–13141.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 13134-13141
-
-
Herzig, R.P.1
-
31
-
-
33746814985
-
Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function
-
31 Wang, C., et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc. Nat. Acad. Sci. U. S. A. 103 (2006), 11567–11572.
-
(2006)
Proc. Nat. Acad. Sci. U. S. A.
, vol.103
, pp. 11567-11572
-
-
Wang, C.1
-
32
-
-
84903521363
-
Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression
-
32 Lee, Y., et al. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510 (2014), 547–551.
-
(2014)
Nature
, vol.510
, pp. 547-551
-
-
Lee, Y.1
-
33
-
-
84902511908
-
Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism
-
33 Xu, Y., et al. Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene 33 (2014), 3161–3171.
-
(2014)
Oncogene
, vol.33
, pp. 3161-3171
-
-
Xu, Y.1
-
34
-
-
84940843287
-
Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation
-
34 Nicolay, B.N., et al. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev. 29 (2015), 1875–1889.
-
(2015)
Genes Dev.
, vol.29
, pp. 1875-1889
-
-
Nicolay, B.N.1
-
35
-
-
84957959125
-
Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities
-
35 Franco, J., et al. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 14 (2016), 979–990.
-
(2016)
Cell Rep.
, vol.14
, pp. 979-990
-
-
Franco, J.1
-
36
-
-
85047690318
-
−/− mice
-
−/− mice. J. Clin. Invest. 113 (2004), 1288–1295.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 1288-1295
-
-
Fajas, L.1
-
37
-
-
68249090581
-
The CDK4–pRB–E2F1 pathway controls insulin secretion
-
37 Annicotte, J.S., et al. The CDK4–pRB–E2F1 pathway controls insulin secretion. Nat. Cell Biol. 11 (2009), 1017–1023.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 1017-1023
-
-
Annicotte, J.S.1
-
38
-
-
84956676264
-
CDK4 is an essential insulin effector in adipocytes
-
38 Lagarrigue, S., et al. CDK4 is an essential insulin effector in adipocytes. J. Clin. Invest. 126 (2016), 335–348.
-
(2016)
J. Clin. Invest.
, vol.126
, pp. 335-348
-
-
Lagarrigue, S.1
-
39
-
-
33745858709
-
Cyclin D1 determines mitochondrial function in vivo
-
39 Sakamaki, T., et al. Cyclin D1 determines mitochondrial function in vivo. Mol. Cell. Biol. 26 (2006), 5449–5469.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 5449-5469
-
-
Sakamaki, T.1
-
40
-
-
84904510627
-
Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts
-
40 Hu, J.W., et al. Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts. Cellular signalling 26 (2014), 2210–2216.
-
(2014)
Cellular signalling
, vol.26
, pp. 2210-2216
-
-
Hu, J.W.1
-
41
-
-
67349249403
-
The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1
-
41 Herrero-Mendez, A., et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol. 11 (2009), 747–752.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 747-752
-
-
Herrero-Mendez, A.1
-
42
-
-
76249114497
-
E3 ubiquitin ligase APC/C–Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation
-
42 Almeida, A., et al. E3 ubiquitin ligase APC/C–Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc. Nat. Acad. Sci. U. S. A. 107 (2010), 738–741.
-
(2010)
Proc. Nat. Acad. Sci. U. S. A.
, vol.107
, pp. 738-741
-
-
Almeida, A.1
-
43
-
-
79955076736
-
Two ubiquitin ligases, APC/C–Cdh1 and SKP1–CUL1–F (SCF)–beta-TrCP, sequentially regulate glycolysis during the cell cycle
-
43 Tudzarova, S., et al. Two ubiquitin ligases, APC/C–Cdh1 and SKP1–CUL1–F (SCF)–beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc. Nat. Acad. Sci. U. S. A. 108 (2011), 5278–5283.
-
(2011)
Proc. Nat. Acad. Sci. U. S. A.
, vol.108
, pp. 5278-5283
-
-
Tudzarova, S.1
-
44
-
-
78650491025
-
Anaphase-promoting complex/cyclosome–Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes
-
44 Colombo, S.L., et al. Anaphase-promoting complex/cyclosome–Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc. Nat. Acad. Sci. U. S. A. 107 (2010), 18868–18873.
-
(2010)
Proc. Nat. Acad. Sci. U. S. A.
, vol.107
, pp. 18868-18873
-
-
Colombo, S.L.1
-
45
-
-
84855476912
-
Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells
-
45 Colombo, S.L., et al. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc. Nat. Acad. Sci. U. S. A. 108 (2011), 21069–21074.
-
(2011)
Proc. Nat. Acad. Sci. U. S. A.
, vol.108
, pp. 21069-21074
-
-
Colombo, S.L.1
-
46
-
-
79952233335
-
Cyclin D1 inhibits mitochondrial activity in B cells
-
46 Tchakarska, G., et al. Cyclin D1 inhibits mitochondrial activity in B cells. Cancer Res. 71 (2011), 1690–1699.
-
(2011)
Cancer Res.
, vol.71
, pp. 1690-1699
-
-
Tchakarska, G.1
-
47
-
-
27644594719
-
Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma
-
47 Sarruf, D.A., et al. Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma. Mol. Cell. Biol. 25 (2005), 9985–9995.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 9985-9995
-
-
Sarruf, D.A.1
-
48
-
-
20444439929
-
Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment
-
48 Fu, M., et al. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J. Biol. Chem. 280 (2005), 16934–16941.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 16934-16941
-
-
Fu, M.1
-
49
-
-
84864386776
-
Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4alpha
-
49 Hanse, E.A., et al. Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4alpha. Cell Cycle 11 (2012), 2681–2690.
-
(2012)
Cell Cycle
, vol.11
, pp. 2681-2690
-
-
Hanse, E.A.1
-
50
-
-
75149175161
-
Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen
-
50 Bienvenu, F., et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 463 (2010), 374–378.
-
(2010)
Nature
, vol.463
, pp. 374-378
-
-
Bienvenu, F.1
-
51
-
-
0023837441
-
Polewards chromosome movement driven by microtubule depolymerization in vitro
-
51 Koshland, D.E., et al. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331 (1988), 499–504.
-
(1988)
Nature
, vol.331
, pp. 499-504
-
-
Koshland, D.E.1
-
52
-
-
0014321746
-
Adenosine triphosphate and synchronous mitosis in Physarum polycephalum
-
52 Chin, B., Bernstein, I.A., Adenosine triphosphate and synchronous mitosis in Physarum polycephalum. J. Bacteriol. 96 (1968), 330–337.
-
(1968)
J. Bacteriol.
, vol.96
, pp. 330-337
-
-
Chin, B.1
Bernstein, I.A.2
-
53
-
-
84899638028
-
Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression
-
53 Wang, Z., et al. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Dev. Cell 29 (2014), 217–232.
-
(2014)
Dev. Cell
, vol.29
, pp. 217-232
-
-
Wang, Z.1
-
54
-
-
84914147253
-
Cell cycle-dependent regulation of mitochondrial preprotein translocase
-
54 Harbauer, A.B., et al. Cell cycle-dependent regulation of mitochondrial preprotein translocase. Science 346 (2014), 1109–1113.
-
(2014)
Science
, vol.346
, pp. 1109-1113
-
-
Harbauer, A.B.1
-
55
-
-
84942990367
-
AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest
-
55 Domenech, E., et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat. Cell Biol. 17 (2015), 1304–1316.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1304-1316
-
-
Domenech, E.1
-
56
-
-
54949153170
-
Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3’UTRs
-
56 Martinez-Diez, M., et al. Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3’UTRs. PloS ONE, 1, 2006, e107.
-
(2006)
PloS ONE
, vol.1
, pp. e107
-
-
Martinez-Diez, M.1
-
57
-
-
84906939724
-
Cell cycle progression in response to oxygen levels
-
57 Ortmann, B., et al. Cell cycle progression in response to oxygen levels. Cell. Mol. Life Sci. 71 (2014), 3569–3582.
-
(2014)
Cell. Mol. Life Sci.
, vol.71
, pp. 3569-3582
-
-
Ortmann, B.1
-
58
-
-
28444496362
-
Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila
-
58 Mandal, S., et al. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9 (2005), 843–854.
-
(2005)
Dev. Cell
, vol.9
, pp. 843-854
-
-
Mandal, S.1
-
59
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
59 Jones, R.G., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18 (2005), 283–293.
-
(2005)
Mol. Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
-
60
-
-
44349184864
-
Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation
-
60 Fu, X., et al. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PloS ONE, 3, 2008, e2009.
-
(2008)
PloS ONE
, vol.3
, pp. e2009
-
-
Fu, X.1
-
61
-
-
63549146637
-
Mitochondrial mutant cells are hypersensitive to ionizing radiation, phleomycin and mitomycin C
-
61 Kulkarni, R., et al. Mitochondrial mutant cells are hypersensitive to ionizing radiation, phleomycin and mitomycin C. Mutat. Res. 663 (2009), 46–51.
-
(2009)
Mutat. Res.
, vol.663
, pp. 46-51
-
-
Kulkarni, R.1
-
62
-
-
84877994984
-
CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress
-
62 Candas, D., et al. CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J. Mol. Cell Biol. 5 (2013), 166–175.
-
(2013)
J. Mol. Cell Biol.
, vol.5
, pp. 166-175
-
-
Candas, D.1
-
63
-
-
84971254439
-
CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair
-
63 Qin, L., et al. CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair. Cell Rep. 13 (2015), 2056–2063.
-
(2015)
Cell Rep.
, vol.13
, pp. 2056-2063
-
-
Qin, L.1
-
64
-
-
84942082375
-
CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance
-
64 Liu, R., et al. CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance. Mol. Cancer Ther. 14 (2015), 2090–2102.
-
(2015)
Mol. Cancer Ther.
, vol.14
, pp. 2090-2102
-
-
Liu, R.1
-
65
-
-
77957857877
-
Cyclin B1/Cdk1 phosphorylation of mitochondrial p53 induces anti-apoptotic response
-
65 Nantajit, D., et al. Cyclin B1/Cdk1 phosphorylation of mitochondrial p53 induces anti-apoptotic response. PloS ONE, 5, 2010, e12341.
-
(2010)
PloS ONE
, vol.5
, pp. e12341
-
-
Nantajit, D.1
-
66
-
-
77957122174
-
The engine driving the ship: metabolic steering of cell proliferation and death
-
66 Buchakjian, M.R., Kornbluth, S., The engine driving the ship: metabolic steering of cell proliferation and death. Nat. Rev. Mol. Cell Biol. 11 (2010), 715–727.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 715-727
-
-
Buchakjian, M.R.1
Kornbluth, S.2
-
67
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
67 Lunt, S.Y., Vander Heiden, M.G., Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27 (2011), 441–464.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
68
-
-
84938232611
-
An essential role of the motochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
-
68 Birsoy, K., et al. An essential role of the motochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162 (2015), 540–551.
-
(2015)
Cell
, vol.162
, pp. 540-551
-
-
Birsoy, K.1
-
69
-
-
84938234308
-
Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
-
69 Sullivan, L.B., et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162 (2015), 552–563.
-
(2015)
Cell
, vol.162
, pp. 552-563
-
-
Sullivan, L.B.1
-
70
-
-
84977865443
-
Energy metabolism in the acquisition and maintenance of stemness
-
70 Folmes, C.D., Terzic, A., Energy metabolism in the acquisition and maintenance of stemness. Semin. Cell Dev. Biol. 52 (2016), 68–75.
-
(2016)
Semin. Cell Dev. Biol.
, vol.52
, pp. 68-75
-
-
Folmes, C.D.1
Terzic, A.2
-
71
-
-
84921260212
-
Pluripotent stem cell energy metabolism: an update
-
71 Teslaa, T., Teitell, M.A., Pluripotent stem cell energy metabolism: an update. EMBO J. 34 (2015), 138–153.
-
(2015)
EMBO J.
, vol.34
, pp. 138-153
-
-
Teslaa, T.1
Teitell, M.A.2
-
72
-
-
84924768387
-
Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors
-
72 Serasinghe, M.N., et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57 (2015), 521–536.
-
(2015)
Mol. Cell
, vol.57
, pp. 521-536
-
-
Serasinghe, M.N.1
-
73
-
-
34548188741
-
Self-eating and self-killing: crosstalk between autophagy and apoptosis
-
73 Maiuri, M.C., et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8 (2007), 741–752.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 741-752
-
-
Maiuri, M.C.1
-
74
-
-
84873521661
-
The role of autophagy in genome stability through suppression of abnormal mitosis under starvation
-
74 Matsui, A., et al. The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genet., 9, 2013, e1003245.
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003245
-
-
Matsui, A.1
-
75
-
-
79952270884
-
HDACs link the DNA damage response, processing of double-strand breaks and autophagy
-
75 Robert, T., et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471 (2011), 74–79.
-
(2011)
Nature
, vol.471
, pp. 74-79
-
-
Robert, T.1
-
76
-
-
84883130930
-
ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy
-
76 Maskey, D., et al. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat. Commun., 4, 2013, 2130.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2130
-
-
Maskey, D.1
-
77
-
-
64349123107
-
Autophagy mediates the mitotic senescence transition
-
77 Young, A.R., et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23 (2009), 798–803.
-
(2009)
Genes Dev.
, vol.23
, pp. 798-803
-
-
Young, A.R.1
-
78
-
-
84905976385
-
Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1alpha to promote cell-cycle progression
-
78 Hubbi, M.E., et al. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1alpha to promote cell-cycle progression. Proc. Nat. Acad. Sci. U. S. A. 111 (2014), E3325–E3334.
-
(2014)
Proc. Nat. Acad. Sci. U. S. A.
, vol.111
, pp. E3325-E3334
-
-
Hubbi, M.E.1
-
79
-
-
84890293880
-
CDK1 stabilizes HIF-1alpha via direct phosphorylation of Ser668 to promote tumor growth
-
79 Warfel, N.A., et al. CDK1 stabilizes HIF-1alpha via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle 12 (2013), 3689–3701.
-
(2013)
Cell Cycle
, vol.12
, pp. 3689-3701
-
-
Warfel, N.A.1
-
80
-
-
84928023582
-
Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage
-
80 Park, C., et al. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat. Commun., 6, 2015, 6823.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6823
-
-
Park, C.1
-
81
-
-
44649141966
-
Regulation of autophagy by cytoplasmic p53
-
81 Tasdemir, E., et al. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 10 (2008), 676–687.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 676-687
-
-
Tasdemir, E.1
|