메뉴 건너뛰기




Volumn 27, Issue 1, 2017, Pages 69-81

Fueling the Cell Division Cycle

Author keywords

cell cycle; energy; glycolysis; metabolism; oxidative phosphorylation

Indexed keywords

CELL CYCLE; CELL CYCLE G1 PHASE; CELL CYCLE PROGRESSION; CELL DIVISION; CELL ENERGY; CELL METABOLISM; GLYCOLYSIS; HUMAN; METABOLIC DISORDER; MITOCHONDRION; MITOSIS; NONHUMAN; OXIDATIVE PHOSPHORYLATION; PRIORITY JOURNAL; REVIEW; ANIMAL; BIOLOGICAL MODEL; ENERGY METABOLISM; METABOLISM;

EID: 85008263079     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.08.009     Document Type: Review
Times cited : (210)

References (81)
  • 1
    • 84969930519 scopus 로고    scopus 로고
    • Cell Cycle: Principles of Control
    • New Science Press
    • 1 Morgan, D.O., Cell Cycle: Principles of Control. 2006, New Science Press.
    • (2006)
    • Morgan, D.O.1
  • 2
    • 84904049068 scopus 로고    scopus 로고
    • Preparing a cell for nuclear envelope breakdown: Spatio-temporal control of phosphorylation during mitotic entry
    • 2 Alvarez-Fernandez, M., Malumbres, M., Preparing a cell for nuclear envelope breakdown: Spatio-temporal control of phosphorylation during mitotic entry. BioEssays 36 (2014), 757–765.
    • (2014) BioEssays , vol.36 , pp. 757-765
    • Alvarez-Fernandez, M.1    Malumbres, M.2
  • 3
    • 0035861891 scopus 로고    scopus 로고
    • A prize for proliferation
    • 3 Nasmyth, K., A prize for proliferation. Cell 107 (2001), 689–701.
    • (2001) Cell , vol.107 , pp. 689-701
    • Nasmyth, K.1
  • 4
    • 84870169302 scopus 로고    scopus 로고
    • Driving the cell cycle through metabolism
    • 4 Cai, L., Tu, B.P., Driving the cell cycle through metabolism. Annu. Rev. Cell Dev. Biol. 28 (2012), 59–87.
    • (2012) Annu. Rev. Cell Dev. Biol. , vol.28 , pp. 59-87
    • Cai, L.1    Tu, B.P.2
  • 5
    • 70449153173 scopus 로고
    • The control of cell division; a review. I. General mechanisms
    • 5 Swann, M.M., The control of cell division; a review. I. General mechanisms. Cancer Res. 17 (1957), 727–757.
    • (1957) Cancer Res. , vol.17 , pp. 727-757
    • Swann, M.M.1
  • 6
    • 0037334009 scopus 로고    scopus 로고
    • Historical review: an energy reservoir for mitosis, and its productive wake
    • 6 Pederson, T., Historical review: an energy reservoir for mitosis, and its productive wake. Trends Biochem. Sci. 28 (2003), 125–129.
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 125-129
    • Pederson, T.1
  • 7
    • 0014301581 scopus 로고
    • Control of cell progression through the mitotic cycle by carbohydrate provision. I. Regulation of cell division in excised plant tissue
    • 7 Van't Hof, J., Control of cell progression through the mitotic cycle by carbohydrate provision. I. Regulation of cell division in excised plant tissue. J. Cell Biol. 37 (1968), 773–780.
    • (1968) J. Cell Biol. , vol.37 , pp. 773-780
    • Van't Hof, J.1
  • 8
    • 0014645034 scopus 로고
    • Oxygen uptake during the HeLa cell life cycle and its correlation with macromolecular synthesis
    • 8 Robbins, E., Morrill, G.A., Oxygen uptake during the HeLa cell life cycle and its correlation with macromolecular synthesis. J. Cell Biol. 43 (1969), 629–633.
    • (1969) J. Cell Biol. , vol.43 , pp. 629-633
    • Robbins, E.1    Morrill, G.A.2
  • 9
    • 0014496933 scopus 로고
    • Dependence of energy and aerobic metabolism of initiation of DNA synthesis and mitosis by G1 and G2 cells
    • 9 Webster, P.L., Hof, J.V., Dependence of energy and aerobic metabolism of initiation of DNA synthesis and mitosis by G1 and G2 cells. Exp. Cell Res. 55 (1969), 88–94.
    • (1969) Exp. Cell Res. , vol.55 , pp. 88-94
    • Webster, P.L.1    Hof, J.V.2
  • 10
    • 0017153683 scopus 로고
    • Aerobic glycolysis during lymphocyte proliferation
    • 10 Wang, T., et al. Aerobic glycolysis during lymphocyte proliferation. Nature 261 (1976), 702–705.
    • (1976) Nature , vol.261 , pp. 702-705
    • Wang, T.1
  • 11
    • 0020453043 scopus 로고
    • Energy metabolism and ATP turnover time during the cell cycle of Ehrlich ascites tumour cells
    • 11 Skog, S., et al. Energy metabolism and ATP turnover time during the cell cycle of Ehrlich ascites tumour cells. Exp. Cell Res. 141 (1982), 23–29.
    • (1982) Exp. Cell Res. , vol.141 , pp. 23-29
    • Skog, S.1
  • 12
    • 60749109846 scopus 로고    scopus 로고
    • Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews
    • 12 Malumbres, M., Barbacid, M., Cell cycle, CDKs and cancer: a changing paradigm. Nature reviews. Cancer 9 (2009), 153–166.
    • (2009) Cancer , vol.9 , pp. 153-166
    • Malumbres, M.1    Barbacid, M.2
  • 13
    • 84923282192 scopus 로고    scopus 로고
    • On the move: organelle dynamics during mitosis
    • 13 Jongsma, M.L., et al. On the move: organelle dynamics during mitosis. Trends Cell Biol. 25 (2015), 112–124.
    • (2015) Trends Cell Biol. , vol.25 , pp. 112-124
    • Jongsma, M.L.1
  • 14
    • 67749089562 scopus 로고    scopus 로고
    • A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase
    • 14 Mitra, K., et al. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Nat. Acad. Sci. U. S. A. 106 (2009), 11960–11965.
    • (2009) Proc. Nat. Acad. Sci. U. S. A. , vol.106 , pp. 11960-11965
    • Mitra, K.1
  • 15
    • 84910141948 scopus 로고    scopus 로고
    • Mitochondrial dynamics and inheritance during cell division, development and disease
    • 15 Mishra, P., Chan, D.C., Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15 (2014), 634–646.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 634-646
    • Mishra, P.1    Chan, D.C.2
  • 16
    • 79954569219 scopus 로고    scopus 로고
    • Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability
    • 16 Horn, S.R., et al. Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol. Biol. Cell 22 (2011), 1207–1216.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1207-1216
    • Horn, S.R.1
  • 17
    • 77149178775 scopus 로고    scopus 로고
    • Metabolic control of G1–S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system
    • 17 Mandal, S., et al. Metabolic control of G1–S transition: cyclin E degradation by p53-induced activation of the ubiquitin-proteasome system. J. Cell Biol. 188 (2010), 473–479.
    • (2010) J. Cell Biol. , vol.188 , pp. 473-479
    • Mandal, S.1
  • 18
    • 84874694989 scopus 로고    scopus 로고
    • Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress
    • 18 Qian, W., et al. Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J. Cell Sci. 125 (2012), 5745–5757.
    • (2012) J. Cell Sci. , vol.125 , pp. 5745-5757
    • Qian, W.1
  • 19
    • 84895180426 scopus 로고    scopus 로고
    • Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition
    • 19 Lee, S., et al. Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cell. Mol. Life Sci. 71 (2014), 711–725.
    • (2014) Cell. Mol. Life Sci. , vol.71 , pp. 711-725
    • Lee, S.1
  • 20
    • 34249689057 scopus 로고    scopus 로고
    • Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
    • 20 Taguchi, N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282 (2007), 11521–11529.
    • (2007) J. Biol. Chem. , vol.282 , pp. 11521-11529
    • Taguchi, N.1
  • 21
    • 80052514798 scopus 로고    scopus 로고
    • RALA and RALBP1 regulate mitochondrial fission at mitosis
    • 21 Kashatus, D.F., et al. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13 (2011), 1108–1115.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1108-1115
    • Kashatus, D.F.1
  • 22
    • 84875273810 scopus 로고    scopus 로고
    • New insights into the function and regulation of mitochondrial fission
    • 22 Otera, H., et al. New insights into the function and regulation of mitochondrial fission. Biochimica et biophysica acta 1833 (2013), 1256–1268.
    • (2013) Biochimica et biophysica acta , vol.1833 , pp. 1256-1268
    • Otera, H.1
  • 23
    • 84871234101 scopus 로고    scopus 로고
    • Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5
    • 23 Park, Y.Y., Cho, H., Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div., 7, 2012, 25.
    • (2012) Cell Div. , vol.7 , pp. 25
    • Park, Y.Y.1    Cho, H.2
  • 24
    • 84939146550 scopus 로고    scopus 로고
    • Mitotic redistribution of the mitochondrial network by Miro and Cenp-F
    • 24 Kanfer, G., et al. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun., 6, 2015, 8015.
    • (2015) Nat. Commun. , vol.6 , pp. 8015
    • Kanfer, G.1
  • 25
    • 84955151670 scopus 로고    scopus 로고
    • Accurate concentration control of mitochondria and nucleoids
    • 25 Jajoo, R., et al. Accurate concentration control of mitochondria and nucleoids. Science 351 (2016), 169–172.
    • (2016) Science , vol.351 , pp. 169-172
    • Jajoo, R.1
  • 26
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • 26 Cho, R.J., et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2 (1998), 65–73.
    • (1998) Mol. Cell , vol.2 , pp. 65-73
    • Cho, R.J.1
  • 27
    • 84887621784 scopus 로고    scopus 로고
    • Metabolic regulation of the cell cycle
    • 27 Lee, I.H., Finkel, T., Metabolic regulation of the cell cycle. Curr. Opin. Cell Biol. 25 (2013), 724–729.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 724-729
    • Lee, I.H.1    Finkel, T.2
  • 28
    • 8644281106 scopus 로고    scopus 로고
    • A common set of gene regulatory networks links metabolism and growth inhibition
    • 28 Cam, H., et al. A common set of gene regulatory networks links metabolism and growth inhibition. Mol. Cell 16 (2004), 399–411.
    • (2004) Mol. Cell , vol.16 , pp. 399-411
    • Cam, H.1
  • 29
    • 84923188503 scopus 로고    scopus 로고
    • Emerging links between E2F control and mitochondrial function
    • 29 Benevolenskaya, E.V., Frolov, M.V., Emerging links between E2F control and mitochondrial function. Cancer Res. 75 (2015), 619–623.
    • (2015) Cancer Res. , vol.75 , pp. 619-623
    • Benevolenskaya, E.V.1    Frolov, M.V.2
  • 30
    • 0034724861 scopus 로고    scopus 로고
    • Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c
    • 30 Herzig, R.P., et al. Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c. J. Biol. Chem. 275 (2000), 13134–13141.
    • (2000) J. Biol. Chem. , vol.275 , pp. 13134-13141
    • Herzig, R.P.1
  • 31
    • 33746814985 scopus 로고    scopus 로고
    • Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function
    • 31 Wang, C., et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc. Nat. Acad. Sci. U. S. A. 103 (2006), 11567–11572.
    • (2006) Proc. Nat. Acad. Sci. U. S. A. , vol.103 , pp. 11567-11572
    • Wang, C.1
  • 32
    • 84903521363 scopus 로고    scopus 로고
    • Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression
    • 32 Lee, Y., et al. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510 (2014), 547–551.
    • (2014) Nature , vol.510 , pp. 547-551
    • Lee, Y.1
  • 33
    • 84902511908 scopus 로고    scopus 로고
    • Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism
    • 33 Xu, Y., et al. Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene 33 (2014), 3161–3171.
    • (2014) Oncogene , vol.33 , pp. 3161-3171
    • Xu, Y.1
  • 34
    • 84940843287 scopus 로고    scopus 로고
    • Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation
    • 34 Nicolay, B.N., et al. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev. 29 (2015), 1875–1889.
    • (2015) Genes Dev. , vol.29 , pp. 1875-1889
    • Nicolay, B.N.1
  • 35
    • 84957959125 scopus 로고    scopus 로고
    • Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities
    • 35 Franco, J., et al. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 14 (2016), 979–990.
    • (2016) Cell Rep. , vol.14 , pp. 979-990
    • Franco, J.1
  • 36
    • 85047690318 scopus 로고    scopus 로고
    • −/− mice
    • −/− mice. J. Clin. Invest. 113 (2004), 1288–1295.
    • (2004) J. Clin. Invest. , vol.113 , pp. 1288-1295
    • Fajas, L.1
  • 37
    • 68249090581 scopus 로고    scopus 로고
    • The CDK4–pRB–E2F1 pathway controls insulin secretion
    • 37 Annicotte, J.S., et al. The CDK4–pRB–E2F1 pathway controls insulin secretion. Nat. Cell Biol. 11 (2009), 1017–1023.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 1017-1023
    • Annicotte, J.S.1
  • 38
    • 84956676264 scopus 로고    scopus 로고
    • CDK4 is an essential insulin effector in adipocytes
    • 38 Lagarrigue, S., et al. CDK4 is an essential insulin effector in adipocytes. J. Clin. Invest. 126 (2016), 335–348.
    • (2016) J. Clin. Invest. , vol.126 , pp. 335-348
    • Lagarrigue, S.1
  • 39
    • 33745858709 scopus 로고    scopus 로고
    • Cyclin D1 determines mitochondrial function in vivo
    • 39 Sakamaki, T., et al. Cyclin D1 determines mitochondrial function in vivo. Mol. Cell. Biol. 26 (2006), 5449–5469.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 5449-5469
    • Sakamaki, T.1
  • 40
    • 84904510627 scopus 로고    scopus 로고
    • Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts
    • 40 Hu, J.W., et al. Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts. Cellular signalling 26 (2014), 2210–2216.
    • (2014) Cellular signalling , vol.26 , pp. 2210-2216
    • Hu, J.W.1
  • 41
    • 67349249403 scopus 로고    scopus 로고
    • The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1
    • 41 Herrero-Mendez, A., et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C–Cdh1. Nat. Cell Biol. 11 (2009), 747–752.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 747-752
    • Herrero-Mendez, A.1
  • 42
    • 76249114497 scopus 로고    scopus 로고
    • E3 ubiquitin ligase APC/C–Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation
    • 42 Almeida, A., et al. E3 ubiquitin ligase APC/C–Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc. Nat. Acad. Sci. U. S. A. 107 (2010), 738–741.
    • (2010) Proc. Nat. Acad. Sci. U. S. A. , vol.107 , pp. 738-741
    • Almeida, A.1
  • 43
    • 79955076736 scopus 로고    scopus 로고
    • Two ubiquitin ligases, APC/C–Cdh1 and SKP1–CUL1–F (SCF)–beta-TrCP, sequentially regulate glycolysis during the cell cycle
    • 43 Tudzarova, S., et al. Two ubiquitin ligases, APC/C–Cdh1 and SKP1–CUL1–F (SCF)–beta-TrCP, sequentially regulate glycolysis during the cell cycle. Proc. Nat. Acad. Sci. U. S. A. 108 (2011), 5278–5283.
    • (2011) Proc. Nat. Acad. Sci. U. S. A. , vol.108 , pp. 5278-5283
    • Tudzarova, S.1
  • 44
    • 78650491025 scopus 로고    scopus 로고
    • Anaphase-promoting complex/cyclosome–Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes
    • 44 Colombo, S.L., et al. Anaphase-promoting complex/cyclosome–Cdh1 coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes. Proc. Nat. Acad. Sci. U. S. A. 107 (2010), 18868–18873.
    • (2010) Proc. Nat. Acad. Sci. U. S. A. , vol.107 , pp. 18868-18873
    • Colombo, S.L.1
  • 45
    • 84855476912 scopus 로고    scopus 로고
    • Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells
    • 45 Colombo, S.L., et al. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proc. Nat. Acad. Sci. U. S. A. 108 (2011), 21069–21074.
    • (2011) Proc. Nat. Acad. Sci. U. S. A. , vol.108 , pp. 21069-21074
    • Colombo, S.L.1
  • 46
    • 79952233335 scopus 로고    scopus 로고
    • Cyclin D1 inhibits mitochondrial activity in B cells
    • 46 Tchakarska, G., et al. Cyclin D1 inhibits mitochondrial activity in B cells. Cancer Res. 71 (2011), 1690–1699.
    • (2011) Cancer Res. , vol.71 , pp. 1690-1699
    • Tchakarska, G.1
  • 47
    • 27644594719 scopus 로고    scopus 로고
    • Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma
    • 47 Sarruf, D.A., et al. Cyclin D3 promotes adipogenesis through activation of peroxisome proliferator-activated receptor gamma. Mol. Cell. Biol. 25 (2005), 9985–9995.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 9985-9995
    • Sarruf, D.A.1
  • 48
    • 20444439929 scopus 로고    scopus 로고
    • Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment
    • 48 Fu, M., et al. Cyclin D1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipogenesis through histone deacetylase recruitment. J. Biol. Chem. 280 (2005), 16934–16941.
    • (2005) J. Biol. Chem. , vol.280 , pp. 16934-16941
    • Fu, M.1
  • 49
    • 84864386776 scopus 로고    scopus 로고
    • Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4alpha
    • 49 Hanse, E.A., et al. Cyclin D1 inhibits hepatic lipogenesis via repression of carbohydrate response element binding protein and hepatocyte nuclear factor 4alpha. Cell Cycle 11 (2012), 2681–2690.
    • (2012) Cell Cycle , vol.11 , pp. 2681-2690
    • Hanse, E.A.1
  • 50
    • 75149175161 scopus 로고    scopus 로고
    • Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen
    • 50 Bienvenu, F., et al. Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen. Nature 463 (2010), 374–378.
    • (2010) Nature , vol.463 , pp. 374-378
    • Bienvenu, F.1
  • 51
    • 0023837441 scopus 로고
    • Polewards chromosome movement driven by microtubule depolymerization in vitro
    • 51 Koshland, D.E., et al. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331 (1988), 499–504.
    • (1988) Nature , vol.331 , pp. 499-504
    • Koshland, D.E.1
  • 52
    • 0014321746 scopus 로고
    • Adenosine triphosphate and synchronous mitosis in Physarum polycephalum
    • 52 Chin, B., Bernstein, I.A., Adenosine triphosphate and synchronous mitosis in Physarum polycephalum. J. Bacteriol. 96 (1968), 330–337.
    • (1968) J. Bacteriol. , vol.96 , pp. 330-337
    • Chin, B.1    Bernstein, I.A.2
  • 53
    • 84899638028 scopus 로고    scopus 로고
    • Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression
    • 53 Wang, Z., et al. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Dev. Cell 29 (2014), 217–232.
    • (2014) Dev. Cell , vol.29 , pp. 217-232
    • Wang, Z.1
  • 54
    • 84914147253 scopus 로고    scopus 로고
    • Cell cycle-dependent regulation of mitochondrial preprotein translocase
    • 54 Harbauer, A.B., et al. Cell cycle-dependent regulation of mitochondrial preprotein translocase. Science 346 (2014), 1109–1113.
    • (2014) Science , vol.346 , pp. 1109-1113
    • Harbauer, A.B.1
  • 55
    • 84942990367 scopus 로고    scopus 로고
    • AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest
    • 55 Domenech, E., et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat. Cell Biol. 17 (2015), 1304–1316.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1304-1316
    • Domenech, E.1
  • 56
    • 54949153170 scopus 로고    scopus 로고
    • Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3’UTRs
    • 56 Martinez-Diez, M., et al. Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3’UTRs. PloS ONE, 1, 2006, e107.
    • (2006) PloS ONE , vol.1 , pp. e107
    • Martinez-Diez, M.1
  • 57
    • 84906939724 scopus 로고    scopus 로고
    • Cell cycle progression in response to oxygen levels
    • 57 Ortmann, B., et al. Cell cycle progression in response to oxygen levels. Cell. Mol. Life Sci. 71 (2014), 3569–3582.
    • (2014) Cell. Mol. Life Sci. , vol.71 , pp. 3569-3582
    • Ortmann, B.1
  • 58
    • 28444496362 scopus 로고    scopus 로고
    • Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila
    • 58 Mandal, S., et al. Mitochondrial regulation of cell cycle progression during development as revealed by the tenured mutation in Drosophila. Dev. Cell 9 (2005), 843–854.
    • (2005) Dev. Cell , vol.9 , pp. 843-854
    • Mandal, S.1
  • 59
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • 59 Jones, R.G., et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18 (2005), 283–293.
    • (2005) Mol. Cell , vol.18 , pp. 283-293
    • Jones, R.G.1
  • 60
    • 44349184864 scopus 로고    scopus 로고
    • Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation
    • 60 Fu, X., et al. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PloS ONE, 3, 2008, e2009.
    • (2008) PloS ONE , vol.3 , pp. e2009
    • Fu, X.1
  • 61
    • 63549146637 scopus 로고    scopus 로고
    • Mitochondrial mutant cells are hypersensitive to ionizing radiation, phleomycin and mitomycin C
    • 61 Kulkarni, R., et al. Mitochondrial mutant cells are hypersensitive to ionizing radiation, phleomycin and mitomycin C. Mutat. Res. 663 (2009), 46–51.
    • (2009) Mutat. Res. , vol.663 , pp. 46-51
    • Kulkarni, R.1
  • 62
    • 84877994984 scopus 로고    scopus 로고
    • CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress
    • 62 Candas, D., et al. CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J. Mol. Cell Biol. 5 (2013), 166–175.
    • (2013) J. Mol. Cell Biol. , vol.5 , pp. 166-175
    • Candas, D.1
  • 63
    • 84971254439 scopus 로고    scopus 로고
    • CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair
    • 63 Qin, L., et al. CDK1 enhances mitochondrial bioenergetics for radiation-induced DNA repair. Cell Rep. 13 (2015), 2056–2063.
    • (2015) Cell Rep. , vol.13 , pp. 2056-2063
    • Qin, L.1
  • 64
    • 84942082375 scopus 로고    scopus 로고
    • CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance
    • 64 Liu, R., et al. CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance. Mol. Cancer Ther. 14 (2015), 2090–2102.
    • (2015) Mol. Cancer Ther. , vol.14 , pp. 2090-2102
    • Liu, R.1
  • 65
    • 77957857877 scopus 로고    scopus 로고
    • Cyclin B1/Cdk1 phosphorylation of mitochondrial p53 induces anti-apoptotic response
    • 65 Nantajit, D., et al. Cyclin B1/Cdk1 phosphorylation of mitochondrial p53 induces anti-apoptotic response. PloS ONE, 5, 2010, e12341.
    • (2010) PloS ONE , vol.5 , pp. e12341
    • Nantajit, D.1
  • 66
    • 77957122174 scopus 로고    scopus 로고
    • The engine driving the ship: metabolic steering of cell proliferation and death
    • 66 Buchakjian, M.R., Kornbluth, S., The engine driving the ship: metabolic steering of cell proliferation and death. Nat. Rev. Mol. Cell Biol. 11 (2010), 715–727.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 715-727
    • Buchakjian, M.R.1    Kornbluth, S.2
  • 67
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • 67 Lunt, S.Y., Vander Heiden, M.G., Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27 (2011), 441–464.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 68
    • 84938232611 scopus 로고    scopus 로고
    • An essential role of the motochondrial electron transport chain in cell proliferation is to enable aspartate synthesis
    • 68 Birsoy, K., et al. An essential role of the motochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162 (2015), 540–551.
    • (2015) Cell , vol.162 , pp. 540-551
    • Birsoy, K.1
  • 69
    • 84938234308 scopus 로고    scopus 로고
    • Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells
    • 69 Sullivan, L.B., et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162 (2015), 552–563.
    • (2015) Cell , vol.162 , pp. 552-563
    • Sullivan, L.B.1
  • 70
    • 84977865443 scopus 로고    scopus 로고
    • Energy metabolism in the acquisition and maintenance of stemness
    • 70 Folmes, C.D., Terzic, A., Energy metabolism in the acquisition and maintenance of stemness. Semin. Cell Dev. Biol. 52 (2016), 68–75.
    • (2016) Semin. Cell Dev. Biol. , vol.52 , pp. 68-75
    • Folmes, C.D.1    Terzic, A.2
  • 71
    • 84921260212 scopus 로고    scopus 로고
    • Pluripotent stem cell energy metabolism: an update
    • 71 Teslaa, T., Teitell, M.A., Pluripotent stem cell energy metabolism: an update. EMBO J. 34 (2015), 138–153.
    • (2015) EMBO J. , vol.34 , pp. 138-153
    • Teslaa, T.1    Teitell, M.A.2
  • 72
    • 84924768387 scopus 로고    scopus 로고
    • Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors
    • 72 Serasinghe, M.N., et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol. Cell 57 (2015), 521–536.
    • (2015) Mol. Cell , vol.57 , pp. 521-536
    • Serasinghe, M.N.1
  • 73
    • 34548188741 scopus 로고    scopus 로고
    • Self-eating and self-killing: crosstalk between autophagy and apoptosis
    • 73 Maiuri, M.C., et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8 (2007), 741–752.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 741-752
    • Maiuri, M.C.1
  • 74
    • 84873521661 scopus 로고    scopus 로고
    • The role of autophagy in genome stability through suppression of abnormal mitosis under starvation
    • 74 Matsui, A., et al. The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genet., 9, 2013, e1003245.
    • (2013) PLoS Genet. , vol.9 , pp. e1003245
    • Matsui, A.1
  • 75
    • 79952270884 scopus 로고    scopus 로고
    • HDACs link the DNA damage response, processing of double-strand breaks and autophagy
    • 75 Robert, T., et al. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471 (2011), 74–79.
    • (2011) Nature , vol.471 , pp. 74-79
    • Robert, T.1
  • 76
    • 84883130930 scopus 로고    scopus 로고
    • ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy
    • 76 Maskey, D., et al. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat. Commun., 4, 2013, 2130.
    • (2013) Nat. Commun. , vol.4 , pp. 2130
    • Maskey, D.1
  • 77
    • 64349123107 scopus 로고    scopus 로고
    • Autophagy mediates the mitotic senescence transition
    • 77 Young, A.R., et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 23 (2009), 798–803.
    • (2009) Genes Dev. , vol.23 , pp. 798-803
    • Young, A.R.1
  • 78
    • 84905976385 scopus 로고    scopus 로고
    • Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1alpha to promote cell-cycle progression
    • 78 Hubbi, M.E., et al. Cyclin-dependent kinases regulate lysosomal degradation of hypoxia-inducible factor 1alpha to promote cell-cycle progression. Proc. Nat. Acad. Sci. U. S. A. 111 (2014), E3325–E3334.
    • (2014) Proc. Nat. Acad. Sci. U. S. A. , vol.111 , pp. E3325-E3334
    • Hubbi, M.E.1
  • 79
    • 84890293880 scopus 로고    scopus 로고
    • CDK1 stabilizes HIF-1alpha via direct phosphorylation of Ser668 to promote tumor growth
    • 79 Warfel, N.A., et al. CDK1 stabilizes HIF-1alpha via direct phosphorylation of Ser668 to promote tumor growth. Cell Cycle 12 (2013), 3689–3701.
    • (2013) Cell Cycle , vol.12 , pp. 3689-3701
    • Warfel, N.A.1
  • 80
    • 84928023582 scopus 로고    scopus 로고
    • Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage
    • 80 Park, C., et al. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat. Commun., 6, 2015, 6823.
    • (2015) Nat. Commun. , vol.6 , pp. 6823
    • Park, C.1
  • 81
    • 44649141966 scopus 로고    scopus 로고
    • Regulation of autophagy by cytoplasmic p53
    • 81 Tasdemir, E., et al. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 10 (2008), 676–687.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 676-687
    • Tasdemir, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.