-
1
-
-
84871530214
-
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
-
Foley E.A., Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 2013, 14:25-37.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 25-37
-
-
Foley, E.A.1
Kapoor, T.M.2
-
2
-
-
79953225554
-
Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission
-
Elia N., et al. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4846-4851.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4846-4851
-
-
Elia, N.1
-
3
-
-
84871998679
-
Spatiotemporal analysis of organelle and macromolecular complex inheritance
-
Menendez-Benito V., et al. Spatiotemporal analysis of organelle and macromolecular complex inheritance. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:175-180.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 175-180
-
-
Menendez-Benito, V.1
-
4
-
-
0037242017
-
Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I
-
Reits E., et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 2003, 18:97-108.
-
(2003)
Immunity
, vol.18
, pp. 97-108
-
-
Reits, E.1
-
5
-
-
0037008997
-
Proteomic analysis of the mammalian nuclear pore complex
-
Cronshaw J.M., et al. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 2002, 158:915-927.
-
(2002)
J. Cell Biol.
, vol.158
, pp. 915-927
-
-
Cronshaw, J.M.1
-
6
-
-
0034717044
-
Gatekeepers of the nucleus
-
Wente S.R. Gatekeepers of the nucleus. Science 2000, 288:1374-1377.
-
(2000)
Science
, vol.288
, pp. 1374-1377
-
-
Wente, S.R.1
-
7
-
-
40049085592
-
Membrane proteins of the endoplasmic reticulum induce high-curvature tubules
-
Hu J., et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 2008, 319:1247-1250.
-
(2008)
Science
, vol.319
, pp. 1247-1250
-
-
Hu, J.1
-
8
-
-
32044445021
-
A class of membrane proteins shaping the tubular endoplasmic reticulum
-
Voeltz G.K., et al. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006, 124:573-586.
-
(2006)
Cell
, vol.124
, pp. 573-586
-
-
Voeltz, G.K.1
-
9
-
-
79251471434
-
Mechanisms determining the morphology of the peripheral ER
-
Shibata Y., et al. Mechanisms determining the morphology of the peripheral ER. Cell 2010, 143:774-788.
-
(2010)
Cell
, vol.143
, pp. 774-788
-
-
Shibata, Y.1
-
10
-
-
67949115773
-
Peripheral ER structure and function
-
English A.R., et al. Peripheral ER structure and function. Curr. Opin. Cell Biol. 2009, 21:596-602.
-
(2009)
Curr. Opin. Cell Biol.
, vol.21
, pp. 596-602
-
-
English, A.R.1
-
11
-
-
75149159324
-
Sarcoplasmic reticulum function in smooth muscle
-
Wray S., Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev. 2010, 90:113-178.
-
(2010)
Physiol Rev.
, vol.90
, pp. 113-178
-
-
Wray, S.1
Burdyga, T.2
-
12
-
-
0036701908
-
COPII-dependent transport from the endoplasmic reticulum
-
Barlowe C. COPII-dependent transport from the endoplasmic reticulum. Curr. Opin. Cell Biol. 2002, 14:417-422.
-
(2002)
Curr. Opin. Cell Biol.
, vol.14
, pp. 417-422
-
-
Barlowe, C.1
-
13
-
-
36849012562
-
Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells
-
Puhka M., et al. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J. Cell Biol. 2007, 179:895-909.
-
(2007)
J. Cell Biol.
, vol.179
, pp. 895-909
-
-
Puhka, M.1
-
14
-
-
67749102520
-
Cisternal organization of the endoplasmic reticulum during mitosis
-
Lu L., et al. Cisternal organization of the endoplasmic reticulum during mitosis. Mol. Biol. Cell 2009, 20:3471-3480.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 3471-3480
-
-
Lu, L.1
-
15
-
-
18244399835
-
Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans
-
Poteryaev D., et al. Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol. Biol. Cell 2005, 16:2139-2153.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2139-2153
-
-
Poteryaev, D.1
-
16
-
-
84863515250
-
Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells
-
Puhka M., et al. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol. Biol. Cell 2012, 23:2424-2432.
-
(2012)
Mol. Biol. Cell
, vol.23
, pp. 2424-2432
-
-
Puhka, M.1
-
17
-
-
0035833254
-
Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells
-
Daigle N., et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 2001, 154:71-84.
-
(2001)
J. Cell Biol.
, vol.154
, pp. 71-84
-
-
Daigle, N.1
-
18
-
-
0030703686
-
Dynamics of proteasome distribution in living cells
-
Reits E.A., et al. Dynamics of proteasome distribution in living cells. EMBO J. 1997, 16:6087-6094.
-
(1997)
EMBO J.
, vol.16
, pp. 6087-6094
-
-
Reits, E.A.1
-
19
-
-
0030763228
-
Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis
-
Ellenberg J., et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 1997, 138:1193-1206.
-
(1997)
J. Cell Biol.
, vol.138
, pp. 1193-1206
-
-
Ellenberg, J.1
-
20
-
-
0030955703
-
Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis
-
Yang L., et al. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 1997, 137:1199-1210.
-
(1997)
J. Cell Biol.
, vol.137
, pp. 1199-1210
-
-
Yang, L.1
-
21
-
-
81855217987
-
Evolvement of LEM proteins as chromatin tethers at the nuclear periphery
-
Brachner A., Foisner R. Evolvement of LEM proteins as chromatin tethers at the nuclear periphery. Biochem. Soc. Trans. 2011, 39:1735-1741.
-
(2011)
Biochem. Soc. Trans.
, vol.39
, pp. 1735-1741
-
-
Brachner, A.1
Foisner, R.2
-
22
-
-
33846195879
-
Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly
-
Gorjanacz M., et al. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J. 2007, 26:132-143.
-
(2007)
EMBO J.
, vol.26
, pp. 132-143
-
-
Gorjanacz, M.1
-
23
-
-
33745450085
-
The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus
-
Nichols R.J., et al. The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol. Biol. Cell 2006, 17:2451-2464.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 2451-2464
-
-
Nichols, R.J.1
-
24
-
-
84896297894
-
Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes
-
Molitor T.P., Traktman P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol. Biol. Cell 2014, 25:891-903.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 891-903
-
-
Molitor, T.P.1
Traktman, P.2
-
25
-
-
16344366871
-
Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules
-
Vedrenne C., et al. Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol. Biol. Cell 2005, 16:1928-1937.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1928-1937
-
-
Vedrenne, C.1
-
26
-
-
84881537115
-
REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture
-
Schlaitz A.L., et al. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev. Cell 2013, 26:315-323.
-
(2013)
Dev. Cell
, vol.26
, pp. 315-323
-
-
Schlaitz, A.L.1
-
27
-
-
84865223570
-
Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle
-
Smyth J.T., et al. Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr. Biol. 2012, 22:1487-1493.
-
(2012)
Curr. Biol.
, vol.22
, pp. 1487-1493
-
-
Smyth, J.T.1
-
28
-
-
38949147783
-
Shaping the endoplasmic reticulum into the nuclear envelope
-
Anderson D.J., Hetzer M.W. Shaping the endoplasmic reticulum into the nuclear envelope. J. Cell Sci. 2008, 121:137-142.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 137-142
-
-
Anderson, D.J.1
Hetzer, M.W.2
-
29
-
-
80052596764
-
Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly
-
Lu L., et al. Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly. J. Cell Biol. 2011, 194:425-440.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 425-440
-
-
Lu, L.1
-
30
-
-
84863632575
-
Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis
-
Asencio C., et al. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell 2012, 150:122-135.
-
(2012)
Cell
, vol.150
, pp. 122-135
-
-
Asencio, C.1
-
31
-
-
80051470309
-
Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit
-
Vagnarelli P., et al. Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit. Dev. Cell 2011, 21:328-342.
-
(2011)
Dev. Cell
, vol.21
, pp. 328-342
-
-
Vagnarelli, P.1
-
32
-
-
28844477653
-
Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
-
Fischle W., et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005, 438:1116-1122.
-
(2005)
Nature
, vol.438
, pp. 1116-1122
-
-
Fischle, W.1
-
33
-
-
0030987777
-
Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR
-
Ye Q., et al. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 1997, 272:14983-14989.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 14983-14989
-
-
Ye, Q.1
-
34
-
-
40849097593
-
Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells
-
Dultz E., et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 2008, 180:857-865.
-
(2008)
J. Cell Biol.
, vol.180
, pp. 857-865
-
-
Dultz, E.1
-
35
-
-
78650131243
-
Inner/outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis
-
Fichtman B., et al. Inner/outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis. Mol. Biol. Cell 2010, 21:4197-4211.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 4197-4211
-
-
Fichtman, B.1
-
36
-
-
0030047960
-
Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA
-
Macaulay C., Forbes D.J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA. J. Cell Biol. 1996, 132:5-20.
-
(1996)
J. Cell Biol.
, vol.132
, pp. 5-20
-
-
Macaulay, C.1
Forbes, D.J.2
-
37
-
-
0042238022
-
RanGTP mediates nuclear pore complex assembly
-
Walther T.C., et al. RanGTP mediates nuclear pore complex assembly. Nature 2003, 424:689-694.
-
(2003)
Nature
, vol.424
, pp. 689-694
-
-
Walther, T.C.1
-
38
-
-
77957743829
-
Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase
-
Dultz E., Ellenberg J. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J. Cell Biol. 2010, 191:15-22.
-
(2010)
J. Cell Biol.
, vol.191
, pp. 15-22
-
-
Dultz, E.1
Ellenberg, J.2
-
39
-
-
84880617115
-
Organization and function of membrane contact sites
-
Helle S.C., et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta 2013, 1833:2526-2541.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 2526-2541
-
-
Helle, S.C.1
-
40
-
-
84896819965
-
2+ and cholesterol at the endosome-ER interface
-
2+ and cholesterol at the endosome-ER interface. J. Cell Sci. 2014, 127:929-938.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 929-938
-
-
van der Kant, R.1
Neefjes, J.2
-
41
-
-
67649600680
-
Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning
-
Rocha N., et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 2009, 185:1209-1225.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 1209-1225
-
-
Rocha, N.1
-
42
-
-
0027056183
-
Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy
-
Preuss D., et al. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol. Biol. Cell 1992, 3:789-803.
-
(1992)
Mol. Biol. Cell
, vol.3
, pp. 789-803
-
-
Preuss, D.1
-
43
-
-
33846936825
-
Golgi biogenesis in simple eukaryotes
-
He C.Y. Golgi biogenesis in simple eukaryotes. Cell. Microbiol. 2007, 9:566-572.
-
(2007)
Cell. Microbiol.
, vol.9
, pp. 566-572
-
-
He, C.Y.1
-
44
-
-
29444448243
-
Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis
-
Segui-Simarro J.M., Staehelin L.A. Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 2006, 223:223-236.
-
(2006)
Planta
, vol.223
, pp. 223-236
-
-
Segui-Simarro, J.M.1
Staehelin, L.A.2
-
45
-
-
0021891884
-
Assembly of asparagine-linked oligosaccharides
-
Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985, 54:631-664.
-
(1985)
Annu. Rev. Biochem.
, vol.54
, pp. 631-664
-
-
Kornfeld, R.1
Kornfeld, S.2
-
46
-
-
65249115901
-
A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing
-
Yadav S., et al. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol. Biol. Cell 2009, 20:1728-1736.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1728-1736
-
-
Yadav, S.1
-
47
-
-
0032559299
-
Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis
-
Acharya U., et al. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 1998, 92:183-192.
-
(1998)
Cell
, vol.92
, pp. 183-192
-
-
Acharya, U.1
-
48
-
-
0035979207
-
Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis
-
Sutterlin C., et al. Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:9128-9132.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 9128-9132
-
-
Sutterlin, C.1
-
49
-
-
3042795657
-
Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS
-
Hidalgo C.C., et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 2004, 305:93-96.
-
(2004)
Science
, vol.305
, pp. 93-96
-
-
Hidalgo, C.C.1
-
50
-
-
0037013167
-
Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells
-
Sutterlin C., et al. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 2002, 109:359-369.
-
(2002)
Cell
, vol.109
, pp. 359-369
-
-
Sutterlin, C.1
-
51
-
-
41949093447
-
The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS
-
Liberali P., et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 2008, 27:970-981.
-
(2008)
EMBO J.
, vol.27
, pp. 970-981
-
-
Liberali, P.1
-
52
-
-
34249065537
-
The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2
-
Colanzi A., et al. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J. 2007, 26:2465-2476.
-
(2007)
EMBO J.
, vol.26
, pp. 2465-2476
-
-
Colanzi, A.1
-
53
-
-
0033066621
-
Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures
-
Farmaki T., et al. Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures. J. Cell Sci. 1999, 112:589-600.
-
(1999)
J. Cell Sci.
, vol.112
, pp. 589-600
-
-
Farmaki, T.1
-
54
-
-
0022367187
-
Newly synthesized G protein of vesicular stomatitis virus is not transported to the Golgi complex in mitotic cells
-
Featherstone C., et al. Newly synthesized G protein of vesicular stomatitis virus is not transported to the Golgi complex in mitotic cells. J. Cell Biol. 1985, 101:2036-2046.
-
(1985)
J. Cell Biol.
, vol.101
, pp. 2036-2046
-
-
Featherstone, C.1
-
55
-
-
34547591790
-
Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation
-
Xiang Y., et al. Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation. J. Biol. Chem. 2007, 282:21829-21837.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 21829-21837
-
-
Xiang, Y.1
-
56
-
-
0345255600
-
A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis
-
Altan-Bonnet N., et al. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13314-13319.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 13314-13319
-
-
Altan-Bonnet, N.1
-
57
-
-
0033544712
-
Golgi membranes are absorbed into and reemerge from the ER during mitosis
-
Zaal K.J., et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 1999, 99:589-601.
-
(1999)
Cell
, vol.99
, pp. 589-601
-
-
Zaal, K.J.1
-
58
-
-
31944440900
-
Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities
-
Altan-Bonnet N., et al. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol. Biol. Cell 2006, 17:990-1005.
-
(2006)
Mol. Biol. Cell
, vol.17
, pp. 990-1005
-
-
Altan-Bonnet, N.1
-
59
-
-
4344700328
-
Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis
-
Kano F., et al. Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis. Mol. Biol. Cell 2004, 15:4289-4298.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 4289-4298
-
-
Kano, F.1
-
60
-
-
0035015738
-
Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates
-
Prescott A.R., et al. Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates. Traffic 2001, 2:321-335.
-
(2001)
Traffic
, vol.2
, pp. 321-335
-
-
Prescott, A.R.1
-
61
-
-
0024591235
-
Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER
-
Lippincott-Schwartz J., et al. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 1989, 56:801-813.
-
(1989)
Cell
, vol.56
, pp. 801-813
-
-
Lippincott-Schwartz, J.1
-
62
-
-
0036468386
-
Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells
-
Seemann J., et al. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 2002, 295:848-851.
-
(2002)
Science
, vol.295
, pp. 848-851
-
-
Seemann, J.1
-
63
-
-
1642464632
-
Rapid, endoplasmic reticulum-independent diffusion of the mitotic Golgi haze
-
Axelsson M.A., Warren G. Rapid, endoplasmic reticulum-independent diffusion of the mitotic Golgi haze. Mol. Biol. Cell 2004, 15:1843-1852.
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 1843-1852
-
-
Axelsson, M.A.1
Warren, G.2
-
64
-
-
0344808789
-
Dispersal of Golgi matrix proteins during mitotic Golgi disassembly
-
Puri S., et al. Dispersal of Golgi matrix proteins during mitotic Golgi disassembly. J. Cell Sci. 2004, 117:451-456.
-
(2004)
J. Cell Sci.
, vol.117
, pp. 451-456
-
-
Puri, S.1
-
65
-
-
0031781229
-
An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle
-
Shima D.T., et al. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 1998, 141:955-966.
-
(1998)
J. Cell Biol.
, vol.141
, pp. 955-966
-
-
Shima, D.T.1
-
66
-
-
0035189890
-
Mitotic Golgi is in a dynamic equilibrium between clustered and free vesicles independent of the ER
-
Jesch S.A., et al. Mitotic Golgi is in a dynamic equilibrium between clustered and free vesicles independent of the ER. Traffic 2001, 2:873-884.
-
(2001)
Traffic
, vol.2
, pp. 873-884
-
-
Jesch, S.A.1
-
67
-
-
0742269687
-
Golgi membranes remain segregated from the endoplasmic reticulum during mitosis in mammalian cells
-
Pecot M.Y., Malhotra V. Golgi membranes remain segregated from the endoplasmic reticulum during mitosis in mammalian cells. Cell 2004, 116:99-107.
-
(2004)
Cell
, vol.116
, pp. 99-107
-
-
Pecot, M.Y.1
Malhotra, V.2
-
68
-
-
63349101386
-
The mitotic spindle mediates inheritance of the Golgi ribbon structure
-
Wei J.H., Seemann J. The mitotic spindle mediates inheritance of the Golgi ribbon structure. J. Cell Biol. 2009, 184:391-397.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 391-397
-
-
Wei, J.H.1
Seemann, J.2
-
69
-
-
33845196026
-
Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy
-
Gaietta G.M., et al. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17777-17782.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 17777-17782
-
-
Gaietta, G.M.1
-
70
-
-
0035939657
-
Golgi clusters and vesicles mediate mitotic inheritance independently of the endoplasmic reticulum
-
Jokitalo E., et al. Golgi clusters and vesicles mediate mitotic inheritance independently of the endoplasmic reticulum. J. Cell Biol. 2001, 154:317-330.
-
(2001)
J. Cell Biol.
, vol.154
, pp. 317-330
-
-
Jokitalo, E.1
-
71
-
-
79960225411
-
The ESCRT pathway
-
Henne W.M., et al. The ESCRT pathway. Dev. Cell 2011, 21:77-91.
-
(2011)
Dev. Cell
, vol.21
, pp. 77-91
-
-
Henne, W.M.1
-
72
-
-
82255164138
-
Towards a systems understanding of MHC class I and MHC class II antigen presentation
-
Neefjes J., et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11:823-836.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 823-836
-
-
Neefjes, J.1
-
73
-
-
0029837980
-
Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface
-
Wubbolts R., et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 1996, 135:611-622.
-
(1996)
J. Cell Biol.
, vol.135
, pp. 611-622
-
-
Wubbolts, R.1
-
74
-
-
33748313351
-
Retrograde transport from endosomes to the trans-Golgi network
-
Bonifacino J.S., Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat. Rev. Mol. Cell Biol. 2006, 7:568-579.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 568-579
-
-
Bonifacino, J.S.1
Rojas, R.2
-
75
-
-
0033933026
-
Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system
-
Rohn W.M., et al. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J. Cell Sci. 2000, 113:2093-2101.
-
(2000)
J. Cell Sci.
, vol.113
, pp. 2093-2101
-
-
Rohn, W.M.1
-
76
-
-
39449115811
-
Formation and function of Weibel-Palade bodies
-
Metcalf D.J., et al. Formation and function of Weibel-Palade bodies. J. Cell Sci. 2008, 121:19-27.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 19-27
-
-
Metcalf, D.J.1
-
77
-
-
59349115753
-
Melanosomes at a glance
-
Wasmeier C., et al. Melanosomes at a glance. J. Cell Sci. 2008, 121:3995-3999.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 3995-3999
-
-
Wasmeier, C.1
-
78
-
-
77953545815
-
The synapse and cytolytic machinery of cytotoxic T cells
-
Jenkins M.R., Griffiths G.M. The synapse and cytolytic machinery of cytotoxic T cells. Curr. Opin. Immunol. 2010, 22:308-313.
-
(2010)
Curr. Opin. Immunol.
, vol.22
, pp. 308-313
-
-
Jenkins, M.R.1
Griffiths, G.M.2
-
80
-
-
0003150825
-
Surface specializations of absorbing cells
-
Fawcett D.W. Surface specializations of absorbing cells. J. Histochem. Cytochem. 1965, 13:75-91.
-
(1965)
J. Histochem. Cytochem.
, vol.13
, pp. 75-91
-
-
Fawcett, D.W.1
-
81
-
-
29244468284
-
Endocytosis resumes during late mitosis and is required for cytokinesis
-
Schweitzer J.K., et al. Endocytosis resumes during late mitosis and is required for cytokinesis. J. Biol. Chem. 2005, 280:41628-41635.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 41628-41635
-
-
Schweitzer, J.K.1
-
82
-
-
0021514607
-
Recycling of transferrin receptors in A431 cells is inhibited during mitosis
-
Warren G., et al. Recycling of transferrin receptors in A431 cells is inhibited during mitosis. EMBO J. 1984, 3:2217-2225.
-
(1984)
EMBO J.
, vol.3
, pp. 2217-2225
-
-
Warren, G.1
-
83
-
-
34249288541
-
Endosomal recycling controls plasma membrane area during mitosis
-
Boucrot E., Kirchhausen T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7939-7944.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 7939-7944
-
-
Boucrot, E.1
Kirchhausen, T.2
-
84
-
-
84883264376
-
Clathrin-mediated endocytosis persists during unperturbed mitosis
-
Tacheva-Grigorova S.K., et al. Clathrin-mediated endocytosis persists during unperturbed mitosis. Cell Rep. 2013, 4:659-668.
-
(2013)
Cell Rep.
, vol.4
, pp. 659-668
-
-
Tacheva-Grigorova, S.K.1
-
85
-
-
77953387155
-
A screen for endocytic motifs
-
Kozik P., et al. A screen for endocytic motifs. Traffic 2010, 11:843-855.
-
(2010)
Traffic
, vol.11
, pp. 843-855
-
-
Kozik, P.1
-
86
-
-
84860136231
-
Clathrin-mediated endocytosis is inhibited during mitosis
-
Fielding A.B., et al. Clathrin-mediated endocytosis is inhibited during mitosis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6572-6577.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 6572-6577
-
-
Fielding, A.B.1
-
87
-
-
0023464741
-
Coated pits in interphase and mitotic A431 cells
-
Pypaert M., et al. Coated pits in interphase and mitotic A431 cells. Eur. J. Cell Biol. 1987, 45:23-29.
-
(1987)
Eur. J. Cell Biol.
, vol.45
, pp. 23-29
-
-
Pypaert, M.1
-
88
-
-
84898745148
-
An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis
-
Kaur S., et al. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. Elife 2014, 3:e00829.
-
(2014)
Elife
, vol.3
, pp. e00829
-
-
Kaur, S.1
-
89
-
-
84875082698
-
Mitosis-coupled, microtubule-dependent clustering of endosomal vesicles around centrosomes
-
Takatsu H., et al. Mitosis-coupled, microtubule-dependent clustering of endosomal vesicles around centrosomes. Cell Struct. Funct. 2013, 38:31-41.
-
(2013)
Cell Struct. Funct.
, vol.38
, pp. 31-41
-
-
Takatsu, H.1
-
90
-
-
84896691702
-
Rab11 endosomes contribute to mitotic spindle organization and orientation
-
Hehnly H., Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell 2014, 28:497-507.
-
(2014)
Dev. Cell
, vol.28
, pp. 497-507
-
-
Hehnly, H.1
Doxsey, S.2
-
91
-
-
0035339536
-
Mitotic partitioning of endosomes and lysosomes
-
Bergeland T., et al. Mitotic partitioning of endosomes and lysosomes. Curr. Biol. 2001, 11:644-651.
-
(2001)
Curr. Biol.
, vol.11
, pp. 644-651
-
-
Bergeland, T.1
-
92
-
-
37049013738
-
Myosin VI is required for targeted membrane transport during cytokinesis
-
Arden S.D., et al. Myosin VI is required for targeted membrane transport during cytokinesis. Mol. Biol. Cell 2007, 18:4750-4761.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 4750-4761
-
-
Arden, S.D.1
-
93
-
-
46249116125
-
Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis
-
Goss J.W., Toomre D.K. Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J. Cell Biol. 2008, 181:1047-1054.
-
(2008)
J. Cell Biol.
, vol.181
, pp. 1047-1054
-
-
Goss, J.W.1
Toomre, D.K.2
-
94
-
-
19944433788
-
The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis
-
Wilson G.M., et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 2005, 16:849-860.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 849-860
-
-
Wilson, G.M.1
-
95
-
-
3042718729
-
Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms
-
Skop A.R., et al. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 2004, 305:61-66.
-
(2004)
Science
, vol.305
, pp. 61-66
-
-
Skop, A.R.1
-
96
-
-
27144483445
-
Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis
-
Fielding A.B., et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 2005, 24:3389-3399.
-
(2005)
EMBO J.
, vol.24
, pp. 3389-3399
-
-
Fielding, A.B.1
-
97
-
-
46949106645
-
Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis
-
Simon G.C., et al. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J. 2008, 27:1791-1803.
-
(2008)
EMBO J.
, vol.27
, pp. 1791-1803
-
-
Simon, G.C.1
-
98
-
-
59349092516
-
ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis
-
Montagnac G., et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr. Biol. 2009, 19:184-195.
-
(2009)
Curr. Biol.
, vol.19
, pp. 184-195
-
-
Montagnac, G.1
-
99
-
-
79961000319
-
Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis
-
Dambournet D., et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat. Cell Biol. 2011, 13:981-988.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 981-988
-
-
Dambournet, D.1
-
100
-
-
84867083334
-
FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis
-
Schiel J.A., et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat. Cell Biol. 2012, 14:1068-1078.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1068-1078
-
-
Schiel, J.A.1
-
101
-
-
79955527115
-
Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission
-
Schiel J.A., et al. Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J. Cell Sci. 2011, 124:1411-1424.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 1411-1424
-
-
Schiel, J.A.1
-
102
-
-
77950994646
-
Autophagy: cellular and molecular mechanisms
-
Glick D., et al. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010, 221:3-12.
-
(2010)
J. Pathol.
, vol.221
, pp. 3-12
-
-
Glick, D.1
-
103
-
-
0036899730
-
Inhibition of autophagy in mitotic animal cells
-
Eskelinen E.L., et al. Inhibition of autophagy in mitotic animal cells. Traffic 2002, 3:878-893.
-
(2002)
Traffic
, vol.3
, pp. 878-893
-
-
Eskelinen, E.L.1
-
104
-
-
66849104285
-
Robust autophagy/mitophagy persists during mitosis
-
Liu L., et al. Robust autophagy/mitophagy persists during mitosis. Cell Cycle 2009, 8:1616-1620.
-
(2009)
Cell Cycle
, vol.8
, pp. 1616-1620
-
-
Liu, L.1
-
105
-
-
58149344946
-
Midbody ring disposal by autophagy is a post-abscission event of cytokinesis
-
Pohl C., Jentsch S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 2009, 11:65-70.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 65-70
-
-
Pohl, C.1
Jentsch, S.2
-
106
-
-
33847005413
-
Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1
-
Dubreuil V., et al. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J. Cell Biol. 2007, 176:483-495.
-
(2007)
J. Cell Biol.
, vol.176
, pp. 483-495
-
-
Dubreuil, V.1
-
107
-
-
80055064443
-
Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour
-
Ettinger A.W., et al. Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat. Commun. 2011, 2:503.
-
(2011)
Nat. Commun.
, vol.2
, pp. 503
-
-
Ettinger, A.W.1
-
108
-
-
84906872099
-
Engulfment of the midbody remnant after cytokinesis in mammalian cells
-
Crowell E.F., et al. Engulfment of the midbody remnant after cytokinesis in mammalian cells. J. Cell Sci. 2014, 127:3840-3851.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 3840-3851
-
-
Crowell, E.F.1
-
109
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen H., et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 2003, 160:189-200.
-
(2003)
J. Cell Biol.
, vol.160
, pp. 189-200
-
-
Chen, H.1
-
110
-
-
0142058391
-
Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion
-
Eura Y., et al. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134:333-344.
-
(2003)
J. Biochem.
, vol.134
, pp. 333-344
-
-
Eura, Y.1
-
111
-
-
8644270474
-
OPA1 requires mitofusin 1 to promote mitochondrial fusion
-
Cipolat S., et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15927-15932.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 15927-15932
-
-
Cipolat, S.1
-
112
-
-
0037424239
-
Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis
-
Olichon A., et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 2003, 278:7743-7746.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 7743-7746
-
-
Olichon, A.1
-
113
-
-
0035166814
-
Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
-
Smirnova E., et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 2001, 12:2245-2256.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2245-2256
-
-
Smirnova, E.1
-
114
-
-
25444471534
-
Dnm1 forms spirals that are structurally tailored to fit mitochondria
-
Ingerman E., et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 2005, 170:1021-1027.
-
(2005)
J. Cell Biol.
, vol.170
, pp. 1021-1027
-
-
Ingerman, E.1
-
115
-
-
80052248915
-
Dynamin: functional design of a membrane fission catalyst
-
Schmid S.L., Frolov V.A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 2011, 27:79-105.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 79-105
-
-
Schmid, S.L.1
Frolov, V.A.2
-
116
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282:11521-11529.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11521-11529
-
-
Taguchi, N.1
-
117
-
-
84871234101
-
Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5
-
Park Y.Y., Cho H. Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div. 2012, 7:25.
-
(2012)
Cell Div.
, vol.7
, pp. 25
-
-
Park, Y.Y.1
Cho, H.2
-
118
-
-
84882690377
-
Mitochondria localize to the cleavage furrow in Mammalian cytokinesis
-
Lawrence E.J., Mandato C.A. Mitochondria localize to the cleavage furrow in Mammalian cytokinesis. PLoS ONE 2013, 8:e72886.
-
(2013)
PLoS ONE
, vol.8
, pp. e72886
-
-
Lawrence, E.J.1
Mandato, C.A.2
-
119
-
-
33646791462
-
The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER
-
Kim P.K., et al. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 2006, 173:521-532.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 521-532
-
-
Kim, P.K.1
-
120
-
-
79955505833
-
Peroxisome assembly: matrix and membrane protein biogenesis
-
Ma C., et al. Peroxisome assembly: matrix and membrane protein biogenesis. J. Cell Biol. 2011, 193:7-16.
-
(2011)
J. Cell Biol.
, vol.193
, pp. 7-16
-
-
Ma, C.1
-
122
-
-
34547595860
-
Yeast peroxisomes multiply by growth and division
-
Motley A.M., Hettema E.H. Yeast peroxisomes multiply by growth and division. J. Cell Biol. 2007, 178:399-410.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 399-410
-
-
Motley, A.M.1
Hettema, E.H.2
-
123
-
-
76249091039
-
Recombination-induced tag exchange to track old and new proteins
-
Verzijlbergen K.F., et al. Recombination-induced tag exchange to track old and new proteins. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:64-68.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 64-68
-
-
Verzijlbergen, K.F.1
-
124
-
-
0031030969
-
Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules
-
Wiemer E.A., et al. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J. Cell Biol. 1997, 136:71-80.
-
(1997)
J. Cell Biol.
, vol.136
, pp. 71-80
-
-
Wiemer, E.A.1
-
125
-
-
34247107180
-
Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis
-
Kobayashi S., et al. Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp. Cell Res. 2007, 313:1675-1686.
-
(2007)
Exp. Cell Res.
, vol.313
, pp. 1675-1686
-
-
Kobayashi, S.1
-
126
-
-
84979211092
-
Mff functions with Pex11pbeta and DLP1 in peroxisomal fission
-
Itoyama A., et al. Mff functions with Pex11pbeta and DLP1 in peroxisomal fission. Biol. Open 2013, 2:998-1006.
-
(2013)
Biol. Open
, vol.2
, pp. 998-1006
-
-
Itoyama, A.1
-
127
-
-
33745742255
-
Shared components of mitochondrial and peroxisomal division
-
Schrader M. Shared components of mitochondrial and peroxisomal division. Biochim. Biophys. Acta 2006, 1763:531-541.
-
(2006)
Biochim. Biophys. Acta
, vol.1763
, pp. 531-541
-
-
Schrader, M.1
-
128
-
-
0035842904
-
A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae
-
Hoepfner D., et al. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J. Cell Biol. 2001, 155:979-990.
-
(2001)
J. Cell Biol.
, vol.155
, pp. 979-990
-
-
Hoepfner, D.1
-
129
-
-
33646093006
-
The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae
-
Fagarasanu A., et al. The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev. Cell 2006, 10:587-600.
-
(2006)
Dev. Cell
, vol.10
, pp. 587-600
-
-
Fagarasanu, A.1
-
130
-
-
70449733045
-
Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors
-
Chang J., et al. Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. J. Cell Biol. 2009, 187:233-246.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 233-246
-
-
Chang, J.1
-
131
-
-
84862267187
-
Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p
-
Otzen M., et al. Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p. Traffic 2012, 13:947-959.
-
(2012)
Traffic
, vol.13
, pp. 947-959
-
-
Otzen, M.1
-
132
-
-
22344452004
-
Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae
-
Fagarasanu M., et al. Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae. J. Cell Biol. 2005, 169:765-775.
-
(2005)
J. Cell Biol.
, vol.169
, pp. 765-775
-
-
Fagarasanu, M.1
-
133
-
-
73349103176
-
A dual function for Pex3p in peroxisome formation and inheritance
-
Munck J.M., et al. A dual function for Pex3p in peroxisome formation and inheritance. J. Cell Biol. 2009, 187:463-471.
-
(2009)
J. Cell Biol.
, vol.187
, pp. 463-471
-
-
Munck, J.M.1
-
134
-
-
84884284362
-
An ER-peroxisome tether exerts peroxisome population control in yeast
-
Knoblach B., et al. An ER-peroxisome tether exerts peroxisome population control in yeast. EMBO J. 2013, 32:2439-2453.
-
(2013)
EMBO J.
, vol.32
, pp. 2439-2453
-
-
Knoblach, B.1
-
135
-
-
84875462369
-
Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature
-
Friedman J.R., et al. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 2013, 24:1030-1040.
-
(2013)
Mol. Biol. Cell
, vol.24
, pp. 1030-1040
-
-
Friedman, J.R.1
-
136
-
-
84872769447
-
An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2
-
Korobova F., et al. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 2013, 339:464-467.
-
(2013)
Science
, vol.339
, pp. 464-467
-
-
Korobova, F.1
|