메뉴 건너뛰기




Volumn 25, Issue 3, 2015, Pages 112-124

On the move: Organelle dynamics during mitosis

Author keywords

Endosomes; ER; Intracellular compartments; Mitochondria; Mitosis; Organelle inheritance

Indexed keywords

AUTOPHAGOSOME; CELL CYCLE; CELL DIVISION; CELL MEMBRANE; CELL ORGANELLE; CELL STRUCTURE; CHROMOSOME REARRANGEMENT; CHROMOSOME SEGREGATION; DNA REPLICATION; ENDOCYTOSIS; ENDOPLASMIC RETICULUM; ENDOSOME; EXTRACELLULAR SPACE; GENETIC ORGANIZATION; GENOME ANALYSIS; GOLGI COMPLEX; INHERITANCE; INTRACELLULAR MEMBRANE; INTRACELLULAR SIGNALING; MAMMAL CELL; MITOCHONDRION; MITOSIS; NONHUMAN; PEROXISOME; PRIORITY JOURNAL; REVIEW; SEGREGATION ANALYSIS; SPATIOTEMPORAL ANALYSIS; TRANS GOLGI NETWORK; ANIMAL; HUMAN; PHYSIOLOGY; TRANSPORT AT THE CELLULAR LEVEL;

EID: 84923282192     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.10.005     Document Type: Review
Times cited : (65)

References (136)
  • 1
    • 84871530214 scopus 로고    scopus 로고
    • Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore
    • Foley E.A., Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 2013, 14:25-37.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 25-37
    • Foley, E.A.1    Kapoor, T.M.2
  • 2
    • 79953225554 scopus 로고    scopus 로고
    • Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission
    • Elia N., et al. Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4846-4851.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 4846-4851
    • Elia, N.1
  • 3
    • 84871998679 scopus 로고    scopus 로고
    • Spatiotemporal analysis of organelle and macromolecular complex inheritance
    • Menendez-Benito V., et al. Spatiotemporal analysis of organelle and macromolecular complex inheritance. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:175-180.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 175-180
    • Menendez-Benito, V.1
  • 4
    • 0037242017 scopus 로고    scopus 로고
    • Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I
    • Reits E., et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 2003, 18:97-108.
    • (2003) Immunity , vol.18 , pp. 97-108
    • Reits, E.1
  • 5
    • 0037008997 scopus 로고    scopus 로고
    • Proteomic analysis of the mammalian nuclear pore complex
    • Cronshaw J.M., et al. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 2002, 158:915-927.
    • (2002) J. Cell Biol. , vol.158 , pp. 915-927
    • Cronshaw, J.M.1
  • 6
    • 0034717044 scopus 로고    scopus 로고
    • Gatekeepers of the nucleus
    • Wente S.R. Gatekeepers of the nucleus. Science 2000, 288:1374-1377.
    • (2000) Science , vol.288 , pp. 1374-1377
    • Wente, S.R.1
  • 7
    • 40049085592 scopus 로고    scopus 로고
    • Membrane proteins of the endoplasmic reticulum induce high-curvature tubules
    • Hu J., et al. Membrane proteins of the endoplasmic reticulum induce high-curvature tubules. Science 2008, 319:1247-1250.
    • (2008) Science , vol.319 , pp. 1247-1250
    • Hu, J.1
  • 8
    • 32044445021 scopus 로고    scopus 로고
    • A class of membrane proteins shaping the tubular endoplasmic reticulum
    • Voeltz G.K., et al. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 2006, 124:573-586.
    • (2006) Cell , vol.124 , pp. 573-586
    • Voeltz, G.K.1
  • 9
    • 79251471434 scopus 로고    scopus 로고
    • Mechanisms determining the morphology of the peripheral ER
    • Shibata Y., et al. Mechanisms determining the morphology of the peripheral ER. Cell 2010, 143:774-788.
    • (2010) Cell , vol.143 , pp. 774-788
    • Shibata, Y.1
  • 10
    • 67949115773 scopus 로고    scopus 로고
    • Peripheral ER structure and function
    • English A.R., et al. Peripheral ER structure and function. Curr. Opin. Cell Biol. 2009, 21:596-602.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 596-602
    • English, A.R.1
  • 11
    • 75149159324 scopus 로고    scopus 로고
    • Sarcoplasmic reticulum function in smooth muscle
    • Wray S., Burdyga T. Sarcoplasmic reticulum function in smooth muscle. Physiol Rev. 2010, 90:113-178.
    • (2010) Physiol Rev. , vol.90 , pp. 113-178
    • Wray, S.1    Burdyga, T.2
  • 12
    • 0036701908 scopus 로고    scopus 로고
    • COPII-dependent transport from the endoplasmic reticulum
    • Barlowe C. COPII-dependent transport from the endoplasmic reticulum. Curr. Opin. Cell Biol. 2002, 14:417-422.
    • (2002) Curr. Opin. Cell Biol. , vol.14 , pp. 417-422
    • Barlowe, C.1
  • 13
    • 36849012562 scopus 로고    scopus 로고
    • Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells
    • Puhka M., et al. Endoplasmic reticulum remains continuous and undergoes sheet-to-tubule transformation during cell division in mammalian cells. J. Cell Biol. 2007, 179:895-909.
    • (2007) J. Cell Biol. , vol.179 , pp. 895-909
    • Puhka, M.1
  • 14
    • 67749102520 scopus 로고    scopus 로고
    • Cisternal organization of the endoplasmic reticulum during mitosis
    • Lu L., et al. Cisternal organization of the endoplasmic reticulum during mitosis. Mol. Biol. Cell 2009, 20:3471-3480.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 3471-3480
    • Lu, L.1
  • 15
    • 18244399835 scopus 로고    scopus 로고
    • Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans
    • Poteryaev D., et al. Involvement of the actin cytoskeleton and homotypic membrane fusion in ER dynamics in Caenorhabditis elegans. Mol. Biol. Cell 2005, 16:2139-2153.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 2139-2153
    • Poteryaev, D.1
  • 16
    • 84863515250 scopus 로고    scopus 로고
    • Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells
    • Puhka M., et al. Progressive sheet-to-tubule transformation is a general mechanism for endoplasmic reticulum partitioning in dividing mammalian cells. Mol. Biol. Cell 2012, 23:2424-2432.
    • (2012) Mol. Biol. Cell , vol.23 , pp. 2424-2432
    • Puhka, M.1
  • 17
    • 0035833254 scopus 로고    scopus 로고
    • Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells
    • Daigle N., et al. Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J. Cell Biol. 2001, 154:71-84.
    • (2001) J. Cell Biol. , vol.154 , pp. 71-84
    • Daigle, N.1
  • 18
    • 0030703686 scopus 로고    scopus 로고
    • Dynamics of proteasome distribution in living cells
    • Reits E.A., et al. Dynamics of proteasome distribution in living cells. EMBO J. 1997, 16:6087-6094.
    • (1997) EMBO J. , vol.16 , pp. 6087-6094
    • Reits, E.A.1
  • 19
    • 0030763228 scopus 로고    scopus 로고
    • Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis
    • Ellenberg J., et al. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J. Cell Biol. 1997, 138:1193-1206.
    • (1997) J. Cell Biol. , vol.138 , pp. 1193-1206
    • Ellenberg, J.1
  • 20
    • 0030955703 scopus 로고    scopus 로고
    • Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis
    • Yang L., et al. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 1997, 137:1199-1210.
    • (1997) J. Cell Biol. , vol.137 , pp. 1199-1210
    • Yang, L.1
  • 21
    • 81855217987 scopus 로고    scopus 로고
    • Evolvement of LEM proteins as chromatin tethers at the nuclear periphery
    • Brachner A., Foisner R. Evolvement of LEM proteins as chromatin tethers at the nuclear periphery. Biochem. Soc. Trans. 2011, 39:1735-1741.
    • (2011) Biochem. Soc. Trans. , vol.39 , pp. 1735-1741
    • Brachner, A.1    Foisner, R.2
  • 22
    • 33846195879 scopus 로고    scopus 로고
    • Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly
    • Gorjanacz M., et al. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J. 2007, 26:132-143.
    • (2007) EMBO J. , vol.26 , pp. 132-143
    • Gorjanacz, M.1
  • 23
    • 33745450085 scopus 로고    scopus 로고
    • The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus
    • Nichols R.J., et al. The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol. Biol. Cell 2006, 17:2451-2464.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 2451-2464
    • Nichols, R.J.1
  • 24
    • 84896297894 scopus 로고    scopus 로고
    • Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes
    • Molitor T.P., Traktman P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol. Biol. Cell 2014, 25:891-903.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 891-903
    • Molitor, T.P.1    Traktman, P.2
  • 25
    • 16344366871 scopus 로고    scopus 로고
    • Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules
    • Vedrenne C., et al. Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules. Mol. Biol. Cell 2005, 16:1928-1937.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1928-1937
    • Vedrenne, C.1
  • 26
    • 84881537115 scopus 로고    scopus 로고
    • REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture
    • Schlaitz A.L., et al. REEP3/4 ensure endoplasmic reticulum clearance from metaphase chromatin and proper nuclear envelope architecture. Dev. Cell 2013, 26:315-323.
    • (2013) Dev. Cell , vol.26 , pp. 315-323
    • Schlaitz, A.L.1
  • 27
    • 84865223570 scopus 로고    scopus 로고
    • Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle
    • Smyth J.T., et al. Phosphoregulation of STIM1 leads to exclusion of the endoplasmic reticulum from the mitotic spindle. Curr. Biol. 2012, 22:1487-1493.
    • (2012) Curr. Biol. , vol.22 , pp. 1487-1493
    • Smyth, J.T.1
  • 28
    • 38949147783 scopus 로고    scopus 로고
    • Shaping the endoplasmic reticulum into the nuclear envelope
    • Anderson D.J., Hetzer M.W. Shaping the endoplasmic reticulum into the nuclear envelope. J. Cell Sci. 2008, 121:137-142.
    • (2008) J. Cell Sci. , vol.121 , pp. 137-142
    • Anderson, D.J.1    Hetzer, M.W.2
  • 29
    • 80052596764 scopus 로고    scopus 로고
    • Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly
    • Lu L., et al. Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly. J. Cell Biol. 2011, 194:425-440.
    • (2011) J. Cell Biol. , vol.194 , pp. 425-440
    • Lu, L.1
  • 30
    • 84863632575 scopus 로고    scopus 로고
    • Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis
    • Asencio C., et al. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell 2012, 150:122-135.
    • (2012) Cell , vol.150 , pp. 122-135
    • Asencio, C.1
  • 31
    • 80051470309 scopus 로고    scopus 로고
    • Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit
    • Vagnarelli P., et al. Repo-Man coordinates chromosomal reorganization with nuclear envelope reassembly during mitotic exit. Dev. Cell 2011, 21:328-342.
    • (2011) Dev. Cell , vol.21 , pp. 328-342
    • Vagnarelli, P.1
  • 32
    • 28844477653 scopus 로고    scopus 로고
    • Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation
    • Fischle W., et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005, 438:1116-1122.
    • (2005) Nature , vol.438 , pp. 1116-1122
    • Fischle, W.1
  • 33
    • 0030987777 scopus 로고    scopus 로고
    • Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR
    • Ye Q., et al. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 1997, 272:14983-14989.
    • (1997) J. Biol. Chem. , vol.272 , pp. 14983-14989
    • Ye, Q.1
  • 34
    • 40849097593 scopus 로고    scopus 로고
    • Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells
    • Dultz E., et al. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 2008, 180:857-865.
    • (2008) J. Cell Biol. , vol.180 , pp. 857-865
    • Dultz, E.1
  • 35
    • 78650131243 scopus 로고    scopus 로고
    • Inner/outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis
    • Fichtman B., et al. Inner/outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis. Mol. Biol. Cell 2010, 21:4197-4211.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 4197-4211
    • Fichtman, B.1
  • 36
    • 0030047960 scopus 로고    scopus 로고
    • Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA
    • Macaulay C., Forbes D.J. Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA. J. Cell Biol. 1996, 132:5-20.
    • (1996) J. Cell Biol. , vol.132 , pp. 5-20
    • Macaulay, C.1    Forbes, D.J.2
  • 37
    • 0042238022 scopus 로고    scopus 로고
    • RanGTP mediates nuclear pore complex assembly
    • Walther T.C., et al. RanGTP mediates nuclear pore complex assembly. Nature 2003, 424:689-694.
    • (2003) Nature , vol.424 , pp. 689-694
    • Walther, T.C.1
  • 38
    • 77957743829 scopus 로고    scopus 로고
    • Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase
    • Dultz E., Ellenberg J. Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J. Cell Biol. 2010, 191:15-22.
    • (2010) J. Cell Biol. , vol.191 , pp. 15-22
    • Dultz, E.1    Ellenberg, J.2
  • 39
    • 84880617115 scopus 로고    scopus 로고
    • Organization and function of membrane contact sites
    • Helle S.C., et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta 2013, 1833:2526-2541.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2526-2541
    • Helle, S.C.1
  • 40
    • 84896819965 scopus 로고    scopus 로고
    • 2+ and cholesterol at the endosome-ER interface
    • 2+ and cholesterol at the endosome-ER interface. J. Cell Sci. 2014, 127:929-938.
    • (2014) J. Cell Sci. , vol.127 , pp. 929-938
    • van der Kant, R.1    Neefjes, J.2
  • 41
    • 67649600680 scopus 로고    scopus 로고
    • Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning
    • Rocha N., et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 2009, 185:1209-1225.
    • (2009) J. Cell Biol. , vol.185 , pp. 1209-1225
    • Rocha, N.1
  • 42
    • 0027056183 scopus 로고
    • Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy
    • Preuss D., et al. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol. Biol. Cell 1992, 3:789-803.
    • (1992) Mol. Biol. Cell , vol.3 , pp. 789-803
    • Preuss, D.1
  • 43
    • 33846936825 scopus 로고    scopus 로고
    • Golgi biogenesis in simple eukaryotes
    • He C.Y. Golgi biogenesis in simple eukaryotes. Cell. Microbiol. 2007, 9:566-572.
    • (2007) Cell. Microbiol. , vol.9 , pp. 566-572
    • He, C.Y.1
  • 44
    • 29444448243 scopus 로고    scopus 로고
    • Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis
    • Segui-Simarro J.M., Staehelin L.A. Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 2006, 223:223-236.
    • (2006) Planta , vol.223 , pp. 223-236
    • Segui-Simarro, J.M.1    Staehelin, L.A.2
  • 45
    • 0021891884 scopus 로고
    • Assembly of asparagine-linked oligosaccharides
    • Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 1985, 54:631-664.
    • (1985) Annu. Rev. Biochem. , vol.54 , pp. 631-664
    • Kornfeld, R.1    Kornfeld, S.2
  • 46
    • 65249115901 scopus 로고    scopus 로고
    • A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing
    • Yadav S., et al. A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing. Mol. Biol. Cell 2009, 20:1728-1736.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1728-1736
    • Yadav, S.1
  • 47
    • 0032559299 scopus 로고    scopus 로고
    • Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis
    • Acharya U., et al. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 1998, 92:183-192.
    • (1998) Cell , vol.92 , pp. 183-192
    • Acharya, U.1
  • 48
    • 0035979207 scopus 로고    scopus 로고
    • Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis
    • Sutterlin C., et al. Polo-like kinase is required for the fragmentation of pericentriolar Golgi stacks during mitosis. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:9128-9132.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 9128-9132
    • Sutterlin, C.1
  • 49
    • 3042795657 scopus 로고    scopus 로고
    • Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS
    • Hidalgo C.C., et al. Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 2004, 305:93-96.
    • (2004) Science , vol.305 , pp. 93-96
    • Hidalgo, C.C.1
  • 50
    • 0037013167 scopus 로고    scopus 로고
    • Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells
    • Sutterlin C., et al. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 2002, 109:359-369.
    • (2002) Cell , vol.109 , pp. 359-369
    • Sutterlin, C.1
  • 51
    • 41949093447 scopus 로고    scopus 로고
    • The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS
    • Liberali P., et al. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 2008, 27:970-981.
    • (2008) EMBO J. , vol.27 , pp. 970-981
    • Liberali, P.1
  • 52
    • 34249065537 scopus 로고    scopus 로고
    • The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2
    • Colanzi A., et al. The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J. 2007, 26:2465-2476.
    • (2007) EMBO J. , vol.26 , pp. 2465-2476
    • Colanzi, A.1
  • 53
    • 0033066621 scopus 로고    scopus 로고
    • Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures
    • Farmaki T., et al. Forward and retrograde trafficking in mitotic animal cells. ER-Golgi transport arrest restricts protein export from the ER into COPII-coated structures. J. Cell Sci. 1999, 112:589-600.
    • (1999) J. Cell Sci. , vol.112 , pp. 589-600
    • Farmaki, T.1
  • 54
    • 0022367187 scopus 로고
    • Newly synthesized G protein of vesicular stomatitis virus is not transported to the Golgi complex in mitotic cells
    • Featherstone C., et al. Newly synthesized G protein of vesicular stomatitis virus is not transported to the Golgi complex in mitotic cells. J. Cell Biol. 1985, 101:2036-2046.
    • (1985) J. Cell Biol. , vol.101 , pp. 2036-2046
    • Featherstone, C.1
  • 55
    • 34547591790 scopus 로고    scopus 로고
    • Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation
    • Xiang Y., et al. Active ADP-ribosylation factor-1 (ARF1) is required for mitotic Golgi fragmentation. J. Biol. Chem. 2007, 282:21829-21837.
    • (2007) J. Biol. Chem. , vol.282 , pp. 21829-21837
    • Xiang, Y.1
  • 56
    • 0345255600 scopus 로고    scopus 로고
    • A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis
    • Altan-Bonnet N., et al. A role for Arf1 in mitotic Golgi disassembly, chromosome segregation, and cytokinesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:13314-13319.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 13314-13319
    • Altan-Bonnet, N.1
  • 57
    • 0033544712 scopus 로고    scopus 로고
    • Golgi membranes are absorbed into and reemerge from the ER during mitosis
    • Zaal K.J., et al. Golgi membranes are absorbed into and reemerge from the ER during mitosis. Cell 1999, 99:589-601.
    • (1999) Cell , vol.99 , pp. 589-601
    • Zaal, K.J.1
  • 58
    • 31944440900 scopus 로고    scopus 로고
    • Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities
    • Altan-Bonnet N., et al. Golgi inheritance in mammalian cells is mediated through endoplasmic reticulum export activities. Mol. Biol. Cell 2006, 17:990-1005.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 990-1005
    • Altan-Bonnet, N.1
  • 59
    • 4344700328 scopus 로고    scopus 로고
    • Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis
    • Kano F., et al. Cdc2 kinase-dependent disassembly of endoplasmic reticulum (ER) exit sites inhibits ER-to-Golgi vesicular transport during mitosis. Mol. Biol. Cell 2004, 15:4289-4298.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 4289-4298
    • Kano, F.1
  • 60
    • 0035015738 scopus 로고    scopus 로고
    • Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates
    • Prescott A.R., et al. Evidence for prebudding arrest of ER export in animal cell mitosis and its role in generating Golgi partitioning intermediates. Traffic 2001, 2:321-335.
    • (2001) Traffic , vol.2 , pp. 321-335
    • Prescott, A.R.1
  • 61
    • 0024591235 scopus 로고
    • Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER
    • Lippincott-Schwartz J., et al. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 1989, 56:801-813.
    • (1989) Cell , vol.56 , pp. 801-813
    • Lippincott-Schwartz, J.1
  • 62
    • 0036468386 scopus 로고    scopus 로고
    • Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells
    • Seemann J., et al. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 2002, 295:848-851.
    • (2002) Science , vol.295 , pp. 848-851
    • Seemann, J.1
  • 63
    • 1642464632 scopus 로고    scopus 로고
    • Rapid, endoplasmic reticulum-independent diffusion of the mitotic Golgi haze
    • Axelsson M.A., Warren G. Rapid, endoplasmic reticulum-independent diffusion of the mitotic Golgi haze. Mol. Biol. Cell 2004, 15:1843-1852.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1843-1852
    • Axelsson, M.A.1    Warren, G.2
  • 64
    • 0344808789 scopus 로고    scopus 로고
    • Dispersal of Golgi matrix proteins during mitotic Golgi disassembly
    • Puri S., et al. Dispersal of Golgi matrix proteins during mitotic Golgi disassembly. J. Cell Sci. 2004, 117:451-456.
    • (2004) J. Cell Sci. , vol.117 , pp. 451-456
    • Puri, S.1
  • 65
    • 0031781229 scopus 로고    scopus 로고
    • An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle
    • Shima D.T., et al. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 1998, 141:955-966.
    • (1998) J. Cell Biol. , vol.141 , pp. 955-966
    • Shima, D.T.1
  • 66
    • 0035189890 scopus 로고    scopus 로고
    • Mitotic Golgi is in a dynamic equilibrium between clustered and free vesicles independent of the ER
    • Jesch S.A., et al. Mitotic Golgi is in a dynamic equilibrium between clustered and free vesicles independent of the ER. Traffic 2001, 2:873-884.
    • (2001) Traffic , vol.2 , pp. 873-884
    • Jesch, S.A.1
  • 67
    • 0742269687 scopus 로고    scopus 로고
    • Golgi membranes remain segregated from the endoplasmic reticulum during mitosis in mammalian cells
    • Pecot M.Y., Malhotra V. Golgi membranes remain segregated from the endoplasmic reticulum during mitosis in mammalian cells. Cell 2004, 116:99-107.
    • (2004) Cell , vol.116 , pp. 99-107
    • Pecot, M.Y.1    Malhotra, V.2
  • 68
    • 63349101386 scopus 로고    scopus 로고
    • The mitotic spindle mediates inheritance of the Golgi ribbon structure
    • Wei J.H., Seemann J. The mitotic spindle mediates inheritance of the Golgi ribbon structure. J. Cell Biol. 2009, 184:391-397.
    • (2009) J. Cell Biol. , vol.184 , pp. 391-397
    • Wei, J.H.1    Seemann, J.2
  • 69
    • 33845196026 scopus 로고    scopus 로고
    • Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy
    • Gaietta G.M., et al. Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17777-17782.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 17777-17782
    • Gaietta, G.M.1
  • 70
    • 0035939657 scopus 로고    scopus 로고
    • Golgi clusters and vesicles mediate mitotic inheritance independently of the endoplasmic reticulum
    • Jokitalo E., et al. Golgi clusters and vesicles mediate mitotic inheritance independently of the endoplasmic reticulum. J. Cell Biol. 2001, 154:317-330.
    • (2001) J. Cell Biol. , vol.154 , pp. 317-330
    • Jokitalo, E.1
  • 71
    • 79960225411 scopus 로고    scopus 로고
    • The ESCRT pathway
    • Henne W.M., et al. The ESCRT pathway. Dev. Cell 2011, 21:77-91.
    • (2011) Dev. Cell , vol.21 , pp. 77-91
    • Henne, W.M.1
  • 72
    • 82255164138 scopus 로고    scopus 로고
    • Towards a systems understanding of MHC class I and MHC class II antigen presentation
    • Neefjes J., et al. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11:823-836.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 823-836
    • Neefjes, J.1
  • 73
    • 0029837980 scopus 로고    scopus 로고
    • Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface
    • Wubbolts R., et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 1996, 135:611-622.
    • (1996) J. Cell Biol. , vol.135 , pp. 611-622
    • Wubbolts, R.1
  • 74
    • 33748313351 scopus 로고    scopus 로고
    • Retrograde transport from endosomes to the trans-Golgi network
    • Bonifacino J.S., Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat. Rev. Mol. Cell Biol. 2006, 7:568-579.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 568-579
    • Bonifacino, J.S.1    Rojas, R.2
  • 75
    • 0033933026 scopus 로고    scopus 로고
    • Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system
    • Rohn W.M., et al. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system. J. Cell Sci. 2000, 113:2093-2101.
    • (2000) J. Cell Sci. , vol.113 , pp. 2093-2101
    • Rohn, W.M.1
  • 76
    • 39449115811 scopus 로고    scopus 로고
    • Formation and function of Weibel-Palade bodies
    • Metcalf D.J., et al. Formation and function of Weibel-Palade bodies. J. Cell Sci. 2008, 121:19-27.
    • (2008) J. Cell Sci. , vol.121 , pp. 19-27
    • Metcalf, D.J.1
  • 77
    • 59349115753 scopus 로고    scopus 로고
    • Melanosomes at a glance
    • Wasmeier C., et al. Melanosomes at a glance. J. Cell Sci. 2008, 121:3995-3999.
    • (2008) J. Cell Sci. , vol.121 , pp. 3995-3999
    • Wasmeier, C.1
  • 78
    • 77953545815 scopus 로고    scopus 로고
    • The synapse and cytolytic machinery of cytotoxic T cells
    • Jenkins M.R., Griffiths G.M. The synapse and cytolytic machinery of cytotoxic T cells. Curr. Opin. Immunol. 2010, 22:308-313.
    • (2010) Curr. Opin. Immunol. , vol.22 , pp. 308-313
    • Jenkins, M.R.1    Griffiths, G.M.2
  • 79
    • 84862883553 scopus 로고    scopus 로고
    • Information processing during phagocytosis
    • Underhill D.M., Goodridge H.S. Information processing during phagocytosis. Nat. Rev. Immunol. 2012, 12:492-502.
    • (2012) Nat. Rev. Immunol. , vol.12 , pp. 492-502
    • Underhill, D.M.1    Goodridge, H.S.2
  • 80
    • 0003150825 scopus 로고
    • Surface specializations of absorbing cells
    • Fawcett D.W. Surface specializations of absorbing cells. J. Histochem. Cytochem. 1965, 13:75-91.
    • (1965) J. Histochem. Cytochem. , vol.13 , pp. 75-91
    • Fawcett, D.W.1
  • 81
    • 29244468284 scopus 로고    scopus 로고
    • Endocytosis resumes during late mitosis and is required for cytokinesis
    • Schweitzer J.K., et al. Endocytosis resumes during late mitosis and is required for cytokinesis. J. Biol. Chem. 2005, 280:41628-41635.
    • (2005) J. Biol. Chem. , vol.280 , pp. 41628-41635
    • Schweitzer, J.K.1
  • 82
    • 0021514607 scopus 로고
    • Recycling of transferrin receptors in A431 cells is inhibited during mitosis
    • Warren G., et al. Recycling of transferrin receptors in A431 cells is inhibited during mitosis. EMBO J. 1984, 3:2217-2225.
    • (1984) EMBO J. , vol.3 , pp. 2217-2225
    • Warren, G.1
  • 83
    • 34249288541 scopus 로고    scopus 로고
    • Endosomal recycling controls plasma membrane area during mitosis
    • Boucrot E., Kirchhausen T. Endosomal recycling controls plasma membrane area during mitosis. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:7939-7944.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 7939-7944
    • Boucrot, E.1    Kirchhausen, T.2
  • 84
    • 84883264376 scopus 로고    scopus 로고
    • Clathrin-mediated endocytosis persists during unperturbed mitosis
    • Tacheva-Grigorova S.K., et al. Clathrin-mediated endocytosis persists during unperturbed mitosis. Cell Rep. 2013, 4:659-668.
    • (2013) Cell Rep. , vol.4 , pp. 659-668
    • Tacheva-Grigorova, S.K.1
  • 85
    • 77953387155 scopus 로고    scopus 로고
    • A screen for endocytic motifs
    • Kozik P., et al. A screen for endocytic motifs. Traffic 2010, 11:843-855.
    • (2010) Traffic , vol.11 , pp. 843-855
    • Kozik, P.1
  • 86
    • 84860136231 scopus 로고    scopus 로고
    • Clathrin-mediated endocytosis is inhibited during mitosis
    • Fielding A.B., et al. Clathrin-mediated endocytosis is inhibited during mitosis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6572-6577.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6572-6577
    • Fielding, A.B.1
  • 87
    • 0023464741 scopus 로고
    • Coated pits in interphase and mitotic A431 cells
    • Pypaert M., et al. Coated pits in interphase and mitotic A431 cells. Eur. J. Cell Biol. 1987, 45:23-29.
    • (1987) Eur. J. Cell Biol. , vol.45 , pp. 23-29
    • Pypaert, M.1
  • 88
    • 84898745148 scopus 로고    scopus 로고
    • An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis
    • Kaur S., et al. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. Elife 2014, 3:e00829.
    • (2014) Elife , vol.3 , pp. e00829
    • Kaur, S.1
  • 89
    • 84875082698 scopus 로고    scopus 로고
    • Mitosis-coupled, microtubule-dependent clustering of endosomal vesicles around centrosomes
    • Takatsu H., et al. Mitosis-coupled, microtubule-dependent clustering of endosomal vesicles around centrosomes. Cell Struct. Funct. 2013, 38:31-41.
    • (2013) Cell Struct. Funct. , vol.38 , pp. 31-41
    • Takatsu, H.1
  • 90
    • 84896691702 scopus 로고    scopus 로고
    • Rab11 endosomes contribute to mitotic spindle organization and orientation
    • Hehnly H., Doxsey S. Rab11 endosomes contribute to mitotic spindle organization and orientation. Dev. Cell 2014, 28:497-507.
    • (2014) Dev. Cell , vol.28 , pp. 497-507
    • Hehnly, H.1    Doxsey, S.2
  • 91
    • 0035339536 scopus 로고    scopus 로고
    • Mitotic partitioning of endosomes and lysosomes
    • Bergeland T., et al. Mitotic partitioning of endosomes and lysosomes. Curr. Biol. 2001, 11:644-651.
    • (2001) Curr. Biol. , vol.11 , pp. 644-651
    • Bergeland, T.1
  • 92
    • 37049013738 scopus 로고    scopus 로고
    • Myosin VI is required for targeted membrane transport during cytokinesis
    • Arden S.D., et al. Myosin VI is required for targeted membrane transport during cytokinesis. Mol. Biol. Cell 2007, 18:4750-4761.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 4750-4761
    • Arden, S.D.1
  • 93
    • 46249116125 scopus 로고    scopus 로고
    • Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis
    • Goss J.W., Toomre D.K. Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J. Cell Biol. 2008, 181:1047-1054.
    • (2008) J. Cell Biol. , vol.181 , pp. 1047-1054
    • Goss, J.W.1    Toomre, D.K.2
  • 94
    • 19944433788 scopus 로고    scopus 로고
    • The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis
    • Wilson G.M., et al. The FIP3-Rab11 protein complex regulates recycling endosome targeting to the cleavage furrow during late cytokinesis. Mol. Biol. Cell 2005, 16:849-860.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 849-860
    • Wilson, G.M.1
  • 95
    • 3042718729 scopus 로고    scopus 로고
    • Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms
    • Skop A.R., et al. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 2004, 305:61-66.
    • (2004) Science , vol.305 , pp. 61-66
    • Skop, A.R.1
  • 96
    • 27144483445 scopus 로고    scopus 로고
    • Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis
    • Fielding A.B., et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 2005, 24:3389-3399.
    • (2005) EMBO J. , vol.24 , pp. 3389-3399
    • Fielding, A.B.1
  • 97
    • 46949106645 scopus 로고    scopus 로고
    • Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis
    • Simon G.C., et al. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J. 2008, 27:1791-1803.
    • (2008) EMBO J. , vol.27 , pp. 1791-1803
    • Simon, G.C.1
  • 98
    • 59349092516 scopus 로고    scopus 로고
    • ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis
    • Montagnac G., et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr. Biol. 2009, 19:184-195.
    • (2009) Curr. Biol. , vol.19 , pp. 184-195
    • Montagnac, G.1
  • 99
    • 79961000319 scopus 로고    scopus 로고
    • Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis
    • Dambournet D., et al. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat. Cell Biol. 2011, 13:981-988.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 981-988
    • Dambournet, D.1
  • 100
    • 84867083334 scopus 로고    scopus 로고
    • FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis
    • Schiel J.A., et al. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat. Cell Biol. 2012, 14:1068-1078.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1068-1078
    • Schiel, J.A.1
  • 101
    • 79955527115 scopus 로고    scopus 로고
    • Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission
    • Schiel J.A., et al. Endocytic membrane fusion and buckling-induced microtubule severing mediate cell abscission. J. Cell Sci. 2011, 124:1411-1424.
    • (2011) J. Cell Sci. , vol.124 , pp. 1411-1424
    • Schiel, J.A.1
  • 102
    • 77950994646 scopus 로고    scopus 로고
    • Autophagy: cellular and molecular mechanisms
    • Glick D., et al. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010, 221:3-12.
    • (2010) J. Pathol. , vol.221 , pp. 3-12
    • Glick, D.1
  • 103
    • 0036899730 scopus 로고    scopus 로고
    • Inhibition of autophagy in mitotic animal cells
    • Eskelinen E.L., et al. Inhibition of autophagy in mitotic animal cells. Traffic 2002, 3:878-893.
    • (2002) Traffic , vol.3 , pp. 878-893
    • Eskelinen, E.L.1
  • 104
    • 66849104285 scopus 로고    scopus 로고
    • Robust autophagy/mitophagy persists during mitosis
    • Liu L., et al. Robust autophagy/mitophagy persists during mitosis. Cell Cycle 2009, 8:1616-1620.
    • (2009) Cell Cycle , vol.8 , pp. 1616-1620
    • Liu, L.1
  • 105
    • 58149344946 scopus 로고    scopus 로고
    • Midbody ring disposal by autophagy is a post-abscission event of cytokinesis
    • Pohl C., Jentsch S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 2009, 11:65-70.
    • (2009) Nat. Cell Biol. , vol.11 , pp. 65-70
    • Pohl, C.1    Jentsch, S.2
  • 106
    • 33847005413 scopus 로고    scopus 로고
    • Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1
    • Dubreuil V., et al. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J. Cell Biol. 2007, 176:483-495.
    • (2007) J. Cell Biol. , vol.176 , pp. 483-495
    • Dubreuil, V.1
  • 107
    • 80055064443 scopus 로고    scopus 로고
    • Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour
    • Ettinger A.W., et al. Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat. Commun. 2011, 2:503.
    • (2011) Nat. Commun. , vol.2 , pp. 503
    • Ettinger, A.W.1
  • 108
    • 84906872099 scopus 로고    scopus 로고
    • Engulfment of the midbody remnant after cytokinesis in mammalian cells
    • Crowell E.F., et al. Engulfment of the midbody remnant after cytokinesis in mammalian cells. J. Cell Sci. 2014, 127:3840-3851.
    • (2014) J. Cell Sci. , vol.127 , pp. 3840-3851
    • Crowell, E.F.1
  • 109
    • 0037455575 scopus 로고    scopus 로고
    • Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
    • Chen H., et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 2003, 160:189-200.
    • (2003) J. Cell Biol. , vol.160 , pp. 189-200
    • Chen, H.1
  • 110
    • 0142058391 scopus 로고    scopus 로고
    • Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion
    • Eura Y., et al. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134:333-344.
    • (2003) J. Biochem. , vol.134 , pp. 333-344
    • Eura, Y.1
  • 111
    • 8644270474 scopus 로고    scopus 로고
    • OPA1 requires mitofusin 1 to promote mitochondrial fusion
    • Cipolat S., et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:15927-15932.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 15927-15932
    • Cipolat, S.1
  • 112
    • 0037424239 scopus 로고    scopus 로고
    • Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis
    • Olichon A., et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 2003, 278:7743-7746.
    • (2003) J. Biol. Chem. , vol.278 , pp. 7743-7746
    • Olichon, A.1
  • 113
    • 0035166814 scopus 로고    scopus 로고
    • Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells
    • Smirnova E., et al. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 2001, 12:2245-2256.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 2245-2256
    • Smirnova, E.1
  • 114
    • 25444471534 scopus 로고    scopus 로고
    • Dnm1 forms spirals that are structurally tailored to fit mitochondria
    • Ingerman E., et al. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 2005, 170:1021-1027.
    • (2005) J. Cell Biol. , vol.170 , pp. 1021-1027
    • Ingerman, E.1
  • 115
    • 80052248915 scopus 로고    scopus 로고
    • Dynamin: functional design of a membrane fission catalyst
    • Schmid S.L., Frolov V.A. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 2011, 27:79-105.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 79-105
    • Schmid, S.L.1    Frolov, V.A.2
  • 116
    • 34249689057 scopus 로고    scopus 로고
    • Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
    • Taguchi N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282:11521-11529.
    • (2007) J. Biol. Chem. , vol.282 , pp. 11521-11529
    • Taguchi, N.1
  • 117
    • 84871234101 scopus 로고    scopus 로고
    • Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5
    • Park Y.Y., Cho H. Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5. Cell Div. 2012, 7:25.
    • (2012) Cell Div. , vol.7 , pp. 25
    • Park, Y.Y.1    Cho, H.2
  • 118
    • 84882690377 scopus 로고    scopus 로고
    • Mitochondria localize to the cleavage furrow in Mammalian cytokinesis
    • Lawrence E.J., Mandato C.A. Mitochondria localize to the cleavage furrow in Mammalian cytokinesis. PLoS ONE 2013, 8:e72886.
    • (2013) PLoS ONE , vol.8 , pp. e72886
    • Lawrence, E.J.1    Mandato, C.A.2
  • 119
    • 33646791462 scopus 로고    scopus 로고
    • The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER
    • Kim P.K., et al. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 2006, 173:521-532.
    • (2006) J. Cell Biol. , vol.173 , pp. 521-532
    • Kim, P.K.1
  • 120
    • 79955505833 scopus 로고    scopus 로고
    • Peroxisome assembly: matrix and membrane protein biogenesis
    • Ma C., et al. Peroxisome assembly: matrix and membrane protein biogenesis. J. Cell Biol. 2011, 193:7-16.
    • (2011) J. Cell Biol. , vol.193 , pp. 7-16
    • Ma, C.1
  • 122
    • 34547595860 scopus 로고    scopus 로고
    • Yeast peroxisomes multiply by growth and division
    • Motley A.M., Hettema E.H. Yeast peroxisomes multiply by growth and division. J. Cell Biol. 2007, 178:399-410.
    • (2007) J. Cell Biol. , vol.178 , pp. 399-410
    • Motley, A.M.1    Hettema, E.H.2
  • 123
    • 76249091039 scopus 로고    scopus 로고
    • Recombination-induced tag exchange to track old and new proteins
    • Verzijlbergen K.F., et al. Recombination-induced tag exchange to track old and new proteins. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:64-68.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 64-68
    • Verzijlbergen, K.F.1
  • 124
    • 0031030969 scopus 로고    scopus 로고
    • Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules
    • Wiemer E.A., et al. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J. Cell Biol. 1997, 136:71-80.
    • (1997) J. Cell Biol. , vol.136 , pp. 71-80
    • Wiemer, E.A.1
  • 125
    • 34247107180 scopus 로고    scopus 로고
    • Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis
    • Kobayashi S., et al. Fis1, DLP1, and Pex11p coordinately regulate peroxisome morphogenesis. Exp. Cell Res. 2007, 313:1675-1686.
    • (2007) Exp. Cell Res. , vol.313 , pp. 1675-1686
    • Kobayashi, S.1
  • 126
    • 84979211092 scopus 로고    scopus 로고
    • Mff functions with Pex11pbeta and DLP1 in peroxisomal fission
    • Itoyama A., et al. Mff functions with Pex11pbeta and DLP1 in peroxisomal fission. Biol. Open 2013, 2:998-1006.
    • (2013) Biol. Open , vol.2 , pp. 998-1006
    • Itoyama, A.1
  • 127
    • 33745742255 scopus 로고    scopus 로고
    • Shared components of mitochondrial and peroxisomal division
    • Schrader M. Shared components of mitochondrial and peroxisomal division. Biochim. Biophys. Acta 2006, 1763:531-541.
    • (2006) Biochim. Biophys. Acta , vol.1763 , pp. 531-541
    • Schrader, M.1
  • 128
    • 0035842904 scopus 로고    scopus 로고
    • A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae
    • Hoepfner D., et al. A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J. Cell Biol. 2001, 155:979-990.
    • (2001) J. Cell Biol. , vol.155 , pp. 979-990
    • Hoepfner, D.1
  • 129
    • 33646093006 scopus 로고    scopus 로고
    • The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae
    • Fagarasanu A., et al. The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev. Cell 2006, 10:587-600.
    • (2006) Dev. Cell , vol.10 , pp. 587-600
    • Fagarasanu, A.1
  • 130
    • 70449733045 scopus 로고    scopus 로고
    • Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors
    • Chang J., et al. Pex3 peroxisome biogenesis proteins function in peroxisome inheritance as class V myosin receptors. J. Cell Biol. 2009, 187:233-246.
    • (2009) J. Cell Biol. , vol.187 , pp. 233-246
    • Chang, J.1
  • 131
    • 84862267187 scopus 로고    scopus 로고
    • Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p
    • Otzen M., et al. Pex19p contributes to peroxisome inheritance in the association of peroxisomes to Myo2p. Traffic 2012, 13:947-959.
    • (2012) Traffic , vol.13 , pp. 947-959
    • Otzen, M.1
  • 132
    • 22344452004 scopus 로고    scopus 로고
    • Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae
    • Fagarasanu M., et al. Inp1p is a peroxisomal membrane protein required for peroxisome inheritance in Saccharomyces cerevisiae. J. Cell Biol. 2005, 169:765-775.
    • (2005) J. Cell Biol. , vol.169 , pp. 765-775
    • Fagarasanu, M.1
  • 133
    • 73349103176 scopus 로고    scopus 로고
    • A dual function for Pex3p in peroxisome formation and inheritance
    • Munck J.M., et al. A dual function for Pex3p in peroxisome formation and inheritance. J. Cell Biol. 2009, 187:463-471.
    • (2009) J. Cell Biol. , vol.187 , pp. 463-471
    • Munck, J.M.1
  • 134
    • 84884284362 scopus 로고    scopus 로고
    • An ER-peroxisome tether exerts peroxisome population control in yeast
    • Knoblach B., et al. An ER-peroxisome tether exerts peroxisome population control in yeast. EMBO J. 2013, 32:2439-2453.
    • (2013) EMBO J. , vol.32 , pp. 2439-2453
    • Knoblach, B.1
  • 135
    • 84875462369 scopus 로고    scopus 로고
    • Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature
    • Friedman J.R., et al. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell 2013, 24:1030-1040.
    • (2013) Mol. Biol. Cell , vol.24 , pp. 1030-1040
    • Friedman, J.R.1
  • 136
    • 84872769447 scopus 로고    scopus 로고
    • An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2
    • Korobova F., et al. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 2013, 339:464-467.
    • (2013) Science , vol.339 , pp. 464-467
    • Korobova, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.