-
1
-
-
67449119292
-
Effects of glycosylation on the stability of protein pharmaceuticals
-
Griebenow, K. A. I., Sola, R. J., Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci. 2009, 98, 1223–1245.
-
(2009)
J. Pharm. Sci.
, vol.98
, pp. 1223-1245
-
-
Griebenow, K.A.I.1
Sola, R.J.2
-
2
-
-
75149183678
-
Glycosylation of therapeutic proteins: An effective strategy to optimiza efficacy
-
Solá, R. J., Griebenow, K., Glycosylation of therapeutic proteins: An effective strategy to optimiza efficacy. BioDrugs 2011, 24, 9–21.
-
(2011)
BioDrugs
, vol.24
, pp. 9-21
-
-
Solá, R.J.1
Griebenow, K.2
-
3
-
-
48549090941
-
Terminal sugars of Fc glycans influence antibody effector functions of IgGs
-
Raju, T. S., Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 2008, 20, 471–478.
-
(2008)
Curr. Opin. Immunol.
, vol.20
, pp. 471-478
-
-
Raju, T.S.1
-
4
-
-
84892754407
-
Emerging principles for the therapeutic exploitation of glycosylation
-
Dalziel, M., Crispin, M., Scanlan, C. N., Zitzmann, N., Dwek, R. A., Emerging principles for the therapeutic exploitation of glycosylation. Science 2014, 343, 1235681.
-
(2014)
Science
, vol.343
, pp. 1235681
-
-
Dalziel, M.1
Crispin, M.2
Scanlan, C.N.3
Zitzmann, N.4
Dwek, R.A.5
-
5
-
-
61649087668
-
Glycosylation as a strategy to improve antibody-based therapeutics
-
Jefferis, R. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev. Drug Discovery 2009, 8, 226–234.
-
(2009)
Nat Rev. Drug Discovery
, vol.8
, pp. 226-234
-
-
Jefferis, R.1
-
6
-
-
70449732650
-
Pharmacological significance of glycosylation in therapeutic proteins
-
Li, H., d'Anjou, M., Pharmacological significance of glycosylation in therapeutic proteins. Curr. Opin. Biotechnol. 2009, 20, 678–684.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 678-684
-
-
Li, H.1
d' Anjou, M.2
-
7
-
-
84957922718
-
Challenges of glycosylation analysis and control: An integrated approach to producing optimal and consistent therapeutic drugs
-
Zhang, P., Woen, S., Wang, T., Liau, B. et al., Challenges of glycosylation analysis and control: An integrated approach to producing optimal and consistent therapeutic drugs. Drug Discovery Today 2016, 21, 740–765.
-
(2016)
Drug Discovery Today
, vol.21
, pp. 740-765
-
-
Zhang, P.1
Woen, S.2
Wang, T.3
Liau, B.4
-
8
-
-
84944880087
-
Biosimilar advancements: Moving on to the future
-
Tsuruta, L. R., Lopes dos Santos, M. Moro, A. M., Biosimilar advancements: Moving on to the future. Biotechnol. Prog. 2015, 31, 1139–1149.
-
(2015)
Biotechnol. Prog.
, vol.31
, pp. 1139-1149
-
-
Tsuruta, L.R.1
dos Santos, L.2
M. Moro, A.M.3
-
9
-
-
84922807192
-
The current status and prospects of antibody engineering for therapeutic use: Focus on glycoengineering technology
-
Niwa, R., Satoh, M., The current status and prospects of antibody engineering for therapeutic use: Focus on glycoengineering technology. J. Pharm. Sci. 2015, 104, 930–941.
-
(2015)
J. Pharm. Sci.
, vol.104
, pp. 930-941
-
-
Niwa, R.1
Satoh, M.2
-
10
-
-
84987945032
-
Modulating carbohydrate–protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology
-
Chiang, A. W., Li, S., Spahn, P. N., Richelle, A. et al., Modulating carbohydrate–protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology. Curr. Opin. Struct. Biol. 2016, 40, 104–111.
-
(2016)
Curr. Opin. Struct. Biol.
, vol.40
, pp. 104-111
-
-
Chiang, A.W.1
Li, S.2
Spahn, P.N.3
Richelle, A.4
-
11
-
-
84947982943
-
A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering
-
Spahn, P. N., Hansen, A. H., Hansen, H. G. Arnsdorf, J. et al., A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering. Metab. Eng. 2016, 33, 52–66.
-
(2016)
Metab. Eng.
, vol.33
, pp. 52-66
-
-
Spahn, P.N.1
Hansen, A.H.2
Hansen, H.G.3
Arnsdorf, J.4
-
12
-
-
84907274931
-
Systems glycobiology for glycoengineering
-
Spahn, P. N., Lewis, N. E., Systems glycobiology for glycoengineering. Curr. Opin. Biotechnol. 2014, 30, 218–224.
-
(2014)
Curr. Opin. Biotechnol.
, vol.30
, pp. 218-224
-
-
Spahn, P.N.1
Lewis, N.E.2
-
13
-
-
84977107145
-
Controlling the time evolution of mAb N-linked glycosylation – Part I: Micro-bioreactor experiments
-
Villiger, T. K., Roulet, A., Périlleux, A., Stettler, M. et al., Controlling the time evolution of mAb N-linked glycosylation – Part I: Micro-bioreactor experiments. Biotechnol. Progr. 2016, 32, 1135–1148.
-
(2016)
Biotechnol. Progr.
, vol.32
, pp. 1135-1148
-
-
Villiger, T.K.1
Roulet, A.2
Périlleux, A.3
Stettler, M.4
-
14
-
-
84940601641
-
One-step generation of triple knockout CHO cell lines using CRISPR Cas9 and fluorescent enrichment
-
Grav, L. M., Lee, J. S., Gerling, S., Kallehauge, T. B. et al., One-step generation of triple knockout CHO cell lines using CRISPR Cas9 and fluorescent enrichment. Biotechnol. J. 2015, 10, 1446–1456.
-
(2015)
Biotechnol. J.
, vol.10
, pp. 1446-1456
-
-
Grav, L.M.1
Lee, J.S.2
Gerling, S.3
Kallehauge, T.B.4
-
16
-
-
84883879484
-
Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab
-
Visser, J., Feuerstein, I., Stangler, T., Schmiederer, T. et al., Physicochemical and functional comparability between the proposed biosimilar rituximab GP2013 and originator rituximab. BioDrugs 2013, 27, 495–507.
-
(2013)
BioDrugs
, vol.27
, pp. 495-507
-
-
Visser, J.1
Feuerstein, I.2
Stangler, T.3
Schmiederer, T.4
-
17
-
-
85019429163
-
Magic bullets to blockbusters
-
Turner, M., Magic bullets to blockbusters. Nature 2015, 523, 34.
-
(2015)
Nature
, vol.523
, pp. 34
-
-
Turner, M.1
-
18
-
-
84947465864
-
The Orphan Drug Act
-
Daniel, M. G., Pawlik, T. M., Fader, A. N., Esnaola, N. F., Makary, M. A., The Orphan Drug Act. Am. J. Clin. Oncol. 2015, 39, 210–213.
-
(2015)
Am. J. Clin. Oncol.
, vol.39
, pp. 210-213
-
-
Daniel, M.G.1
Pawlik, T.M.2
Fader, A.N.3
Esnaola, N.F.4
Makary, M.A.5
-
19
-
-
34547909649
-
Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain
-
Raju, T. S., Scallon, B., Fc glycans terminated with N-acetylglucosamine residues increase antibody resistance to papain. Biotechnol. Progr. 2007, 23, 964–971.
-
(2007)
Biotechnol. Progr.
, vol.23
, pp. 964-971
-
-
Raju, T.S.1
Scallon, B.2
-
20
-
-
84938895840
-
Engineered CHO cells for production of diverse, homogeneous glycoproteins
-
Yang, Z., Wang, S., Halim, A., Schulz, M. A. et al., Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat. Biotechnol, 2015, 33, 842–844.
-
(2015)
Nat. Biotechnol,
, vol.33
, pp. 842-844
-
-
Yang, Z.1
Wang, S.2
Halim, A.3
Schulz, M.A.4
-
21
-
-
84931562808
-
Tailoring recombinant protein quality by rational media design
-
Brühlman, D., Jordan, M., Hemberger, J., Sauer, M. et al., Tailoring recombinant protein quality by rational media design. Biotechnol. Progr. 2015, 31, 615–629.
-
(2015)
Biotechnol. Progr.
, vol.31
, pp. 615-629
-
-
Brühlman, D.1
Jordan, M.2
Hemberger, J.3
Sauer, M.4
-
22
-
-
38649143213
-
Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: A new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC
-
Imai-Nishiya, H., Mori, K., Inoue, M., Wakitani. M. et al., Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: A new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC. BMC Biotechnol. 2007, 7, 84.
-
(2007)
BMC Biotechnol.
, vol.7
, pp. 84
-
-
Imai-Nishiya, H.1
Mori, K.2
Inoue, M.3
Wakitani, M.4
-
23
-
-
84862906051
-
Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome
-
Rillahan, C. D., Antonopoulos, A., Lefort, C. T., Sonon, R. et al., Global metabolic inhibitors of sialyl- and fucosyltransferases remodel the glycome. Nat Chem Biol 2012, 8, 661–668.
-
(2012)
Nat Chem Biol
, vol.8
, pp. 661-668
-
-
Rillahan, C.D.1
Antonopoulos, A.2
Lefort, C.T.3
Sonon, R.4
-
24
-
-
85011789644
-
-
in AACR 106th Annual Meeting 2015. Cancer Res.
-
Gardai, S., Epp, A., Linares, G., et al., SEA-CD40, a sugar engineered non-fucosylated anti-CD40 antibody with improved immune activating capabilities, in: AACR 106th Annual Meeting 2015. Cancer Res. 2015, 75, Abstract Nr. 2472, doi: 10.1158/1538-7445.AM2015-2472.
-
(2015)
SEA-CD40, a sugar engineered non-fucosylated anti-CD40 antibody with improved immune activating capabilities
, vol.75
-
-
Gardai, S.1
Epp, A.2
Linares, G.3
-
25
-
-
84886075258
-
Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation
-
Okeley, N. M., Toki, B. E., Zhang, X., Jeffrey, S. C. et al., Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation. Bioconjugate Chem. 2013, 24, 1650–1655.
-
(2013)
Bioconjugate Chem.
, vol.24
, pp. 1650-1655
-
-
Okeley, N.M.1
Toki, B.E.2
Zhang, X.3
Jeffrey, S.C.4
-
26
-
-
84928175300
-
Manganese increases high mannose glycoform on monoclonal antibody expressed in CHO when glucose is absent or limiting: Implications for use of alternate sugars
-
Surve, T., Gadgil, M. Manganese increases high mannose glycoform on monoclonal antibody expressed in CHO when glucose is absent or limiting: Implications for use of alternate sugars. Biotechnol. Progr. 2015, 31, 460–467.
-
(2015)
Biotechnol. Progr.
, vol.31
, pp. 460-467
-
-
Surve, T.1
Gadgil, M.2
-
27
-
-
84929957067
-
Monensin, a small molecule ionophore, can be used to increase high mannose levels on monoclonal antibodies generated by Chinese hamster ovary production cell-lines
-
Pande, S., Rahardjo, A., Livingston, B., Mujacic, M., Monensin, a small molecule ionophore, can be used to increase high mannose levels on monoclonal antibodies generated by Chinese hamster ovary production cell-lines. Biotechnol. Bioeng. 2015, 112, 1383–1394.
-
(2015)
Biotechnol. Bioeng.
, vol.112
, pp. 1383-1394
-
-
Pande, S.1
Rahardjo, A.2
Livingston, B.3
Mujacic, M.4
-
28
-
-
84935713928
-
Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO culture
-
Villacres C, Tayi VS, Lattova E, Perreault, H., Butler, M., Low glucose depletes glycan precursors, reduces site occupancy and galactosylation of a monoclonal antibody in CHO culture. Biotechnol. J. 2015, 10, 1051–1066.
-
(2015)
Biotechnol. J.
, vol.10
, pp. 1051-1066
-
-
Villacres, C.1
Tayi, V.S.2
Lattova, E.3
Perreault, H.4
Butler, M.5
-
29
-
-
84898778301
-
A guide to genome engineering with programmable nucleases
-
Kim, H., Kim, J. S., A guide to genome engineering with programmable nucleases. Nat Rev Genet 2014, 15, 321–334.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 321-334
-
-
Kim, H.1
Kim, J.S.2
-
30
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
-
Gaj, T., Gersbach, C. A., Barbas, C. F., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405.
-
(2013)
Trends Biotechnol.
, vol.31
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas, C.F.3
-
31
-
-
84935741315
-
CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives
-
Lee, J. S., Grav, L. M., Lewis, N. E., Faustrup Kildegaard, H., CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnol. J. 2015, 10, 979–994.
-
(2015)
Biotechnol. J.
, vol.10
, pp. 979-994
-
-
Lee, J.S.1
Grav, L.M.2
Lewis, N.E.3
Faustrup Kildegaard, H.4
-
32
-
-
0032693972
-
Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins
-
Weikert, S., Papac, D., Briggs, J., Cowfer, D. et al., Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 1999, 17, 1116–1121.
-
(1999)
Nat. Biotechnol.
, vol.17
, pp. 1116-1121
-
-
Weikert, S.1
Papac, D.2
Briggs, J.3
Cowfer, D.4
-
33
-
-
84928208106
-
Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression
-
Lin, N., Mascarenhas, J., Sealover, N. R., George, H. J. et al., Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression. Biotechnol. Progr. 2015, 31, 334–346.
-
(2015)
Biotechnol. Progr.
, vol.31
, pp. 334-346
-
-
Lin, N.1
Mascarenhas, J.2
Sealover, N.R.3
George, H.J.4
-
34
-
-
84920992414
-
Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
-
Zalatan, J. G., Lee, M. E., Almeida, R., Gilbert, L. A. et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 2015, 160, 339–350.
-
(2015)
Cell
, vol.160
, pp. 339-350
-
-
Zalatan, J.G.1
Lee, M.E.2
Almeida, R.3
Gilbert, L.A.4
-
35
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F. et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 2013, 10, 973–976.
-
(2013)
Nat. Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
Adler, A.F.4
-
36
-
-
8344248749
-
Gas-inducible transgene expression in mammalian cells and mice
-
Weber, W., Rimann, M., Spielmann, M., Keller, B. et al., Gas-inducible transgene expression in mammalian cells and mice. Nat. Biotechnol. 2004, 22, 1440–1444.
-
(2004)
Nat. Biotechnol.
, vol.22
, pp. 1440-1444
-
-
Weber, W.1
Rimann, M.2
Spielmann, M.3
Keller, B.4
-
37
-
-
0026720075
-
Tight control of gene expression in mammalian cells by tetracycline-responsive promoters
-
Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 1992, 89, 5547–5551.
-
(1992)
Proc. Natl. Acad. Sci. USA
, vol.89
, pp. 5547-5551
-
-
Gossen, M.1
Bujard, H.2
-
38
-
-
84884530112
-
CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation
-
Grainger RK, James DC. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol. Bioeng. 2013, 110, 2970–2983.
-
(2013)
Biotechnol. Bioeng.
, vol.110
, pp. 2970-2983
-
-
Grainger, R.K.1
James, D.C.2
-
39
-
-
79956155356
-
Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose
-
Gramer, M. J., Eckblad, J. J., Donahue, R., Brown, J. et al., Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 2011, 108, 1591–1602.
-
(2011)
Biotechnol Bioeng
, vol.108
, pp. 1591-1602
-
-
Gramer, M.J.1
Eckblad, J.J.2
Donahue, R.3
Brown, J.4
-
40
-
-
84904365784
-
Identification of manipulated variables for a glycosylation control strategy
-
St Amand, M. M., Radhakrishnan, D., Robinson, A. S., Ogunnaike, B. A., Identification of manipulated variables for a glycosylation control strategy. Biotechnol. Bioeng, 2014, 111, 1957–1970.
-
(2014)
Biotechnol. Bioeng,
, vol.111
, pp. 1957-1970
-
-
St Amand, M.M.1
Radhakrishnan, D.2
Robinson, A.S.3
Ogunnaike, B.A.4
-
41
-
-
84969369434
-
Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework
-
del Val, I. J., Fan, Y., Weilguny, D., Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework. Biotechnol. J. 2016, 11, 610–623.
-
(2016)
Biotechnol. J.
, vol.11
, pp. 610-623
-
-
del Val, I.J.1
Fan, Y.2
Weilguny, D.3
-
42
-
-
84896474989
-
Towards controlling the glycoform: A model framework linking extracellular metabolites to antibody glycosylation
-
Jedrzejewski, P. M., del Val, I. J., Constantinou, A., Dell, A. et al., Towards controlling the glycoform: A model framework linking extracellular metabolites to antibody glycosylation. Int. J. Mol. Sci. 2014, 15, 4492–4522.
-
(2014)
Int. J. Mol. Sci.
, vol.15
, pp. 4492-4522
-
-
Jedrzejewski, P.M.1
del Val, I.J.2
Constantinou, A.3
Dell, A.4
-
43
-
-
81855194825
-
Systems glycobiology: Biochemical reaction networks regulating glycan structure and function
-
Neelamegham, S., Liu, G., Systems glycobiology: Biochemical reaction networks regulating glycan structure and function. Glycobiology 2011, 21, 1541–1553.
-
(2011)
Glycobiology
, vol.21
, pp. 1541-1553
-
-
Neelamegham, S.1
Liu, G.2
-
44
-
-
84877015785
-
Protein glycosylation control in mammalian cell culture: Past precedents and contemporary prospects
-
in, Hu, W. S., Zeng, A.-P., (Eds.),, Springer
-
Hossler P., Protein glycosylation control in mammalian cell culture: Past precedents and contemporary prospects, in: Hu, W. S., Zeng, A.-P. (Eds.), Genomics and Systems Biology of Mammalian Cell Culture, Vol. 127, Springer 2012, pp. 187–219.
-
(2012)
Genomics and Systems Biology of Mammalian Cell Culture
, vol.127
, pp. 187-219
-
-
Hossler, P.1
|