-
1
-
-
84867125855
-
Bayesian posterior sampling via stochastic gradient fisher scoring
-
Ahn, S.; Korattikara, A.; and Welling, M. 2012. Bayesian posterior sampling via stochastic gradient fisher scoring. In ICML.
-
(2012)
ICML
-
-
Ahn, S.1
Korattikara, A.2
Welling, M.3
-
4
-
-
84965148019
-
Preconditioned spectral descent for deep learning
-
Carlson, D.; Collins, E.; Hsieh, Y. P.; Carin, L.; and Cevher, V. 2015. Preconditioned spectral descent for deep learning. In NIPS.
-
(2015)
NIPS
-
-
Carlson, D.1
Collins, E.2
Hsieh, Y.P.3
Carin, L.4
Cevher, V.5
-
5
-
-
84965095225
-
On the convergence of stochastic gradient MCMC algorithms with high-order integrators
-
Chen, C.; Ding, N.; and Carin, L. 2015. On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In NIPS.
-
(2015)
NIPS
-
-
Chen, C.1
Ding, N.2
Carin, L.3
-
6
-
-
84919787787
-
Stochastic gradient Hamiltonian Monte Carlo
-
Chen, T.; Fox, E. B.; and Guestrin, C. 2014. Stochastic gradient Hamiltonian Monte Carlo. In ICML.
-
(2014)
ICML
-
-
Chen, T.1
Fox, E.B.2
Guestrin, C.3
-
7
-
-
84928534967
-
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
-
Dauphin, Y. N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.; and Bengio, Y. 2014. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS.
-
(2014)
NIPS
-
-
Dauphin, Y.N.1
Pascanu, R.2
Gulcehre, C.3
Cho, K.4
Ganguli, S.5
Bengio, Y.6
-
8
-
-
84965117097
-
Equilibrated adaptive learning rates for non-convex optimization
-
Dauphin, Y. N.; de Vries, H.; and Bengio, Y. 2015. Equilibrated adaptive learning rates for non-convex optimization. In NIPS.
-
(2015)
NIPS
-
-
Dauphin, Y.N.1
De Vries, H.2
Bengio, Y.3
-
9
-
-
84937959155
-
Bayesian sampling using stochastic gradient thermostats
-
Ding, N.; Fang, Y.; Babbush, R.; Chen, C.; Skeel, R. D.; and Neven, H. 2014. Bayesian sampling using stochastic gradient thermostats. In NIPS.
-
(2014)
NIPS
-
-
Ding, N.1
Fang, Y.2
Babbush, R.3
Chen, C.4
Skeel, R.D.5
Neven, H.6
-
10
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradient methods for online learning and stochastic optimization. JMLR.
-
(2011)
JMLR
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
11
-
-
84965120997
-
Fast second-order stochastic backpropagation for variational inference
-
Fan, K.; Wang, Z.; Beck, J.; Kwok, J.; and Heller, J. 2015. Fast second-order stochastic backpropagation for variational inference. In NIPS.
-
(2015)
NIPS
-
-
Fan, K.1
Wang, Z.2
Beck, J.3
Kwok, J.4
Heller, J.5
-
13
-
-
84965123118
-
Deep temporal sigmoid belief networks for sequence modeling
-
Gan, Z.; Li, C.; Henao, R.; Carlson, D.; and Carin, L. 2015. Deep temporal sigmoid belief networks for sequence modeling. NIPS.
-
(2015)
NIPS
-
-
Gan, Z.1
Li, C.2
Henao, R.3
Carlson, D.4
Carin, L.5
-
14
-
-
79952295497
-
Riemann manifold langevin and hamiltonian monte carlo methods
-
Series B
-
Girolami, M., and Calderhead, B. 2011. Riemann manifold langevin and hamiltonian monte carlo methods. In JRSS: Series B.
-
(2011)
JRSS
-
-
Girolami, M.1
Calderhead, B.2
-
15
-
-
84897543523
-
Maxout networks
-
Goodfellow, I.; Warde-farley, D.; Mirza, M.; Courville, A.; and Bengio, Y. 2013. Maxout networks. In ICML.
-
(2013)
ICML
-
-
Goodfellow, I.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
16
-
-
84969909658
-
Probabilistic backpropagation for scalable learning of Bayesian neural networks
-
Hernández-Lobato, J. M., and Adams, R. P. 2015. Probabilistic backpropagation for scalable learning of bayesian neural networks. In ICML.
-
(2015)
ICML
-
-
Hernández-Lobato, J.M.1
Adams, R.P.2
-
17
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; and LeCun, Y. 2009. What is the best multi-stage architecture for object recognition? In ICCV.
-
(2009)
ICCV
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
18
-
-
85083951076
-
Adam: A method for stochastic optimization
-
Kingma, D., and Ba, J. 2015. Adam: A method for stochastic optimization. ICLR.
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
19
-
-
84965103544
-
Variational dropout and the local reparameterization trick
-
Kingma, D. P.; Salimans, T.; and Welling, M. 2015. Variational dropout and the local reparameterization trick. NIPS.
-
(2015)
NIPS
-
-
Kingma, D.P.1
Salimans, T.2
Welling, M.3
-
21
-
-
84919819551
-
Austerity in MCMC land: Cutting the Metropolis-Hastings budget
-
Korattikara, A.; Chen, Y.; and Welling, M. 2014. Austerity in MCMC land: Cutting the Metropolis-Hastings budget. ICML.
-
(2014)
ICML
-
-
Korattikara, A.1
Chen, Y.2
Welling, M.3
-
22
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
23
-
-
85007273869
-
Highorder stochastic gradient thermostats for Bayesian learning of deep models
-
Li, C.; Chen, C.; Fan, K.; and Carin, L. 2016. Highorder stochastic gradient thermostats for Bayesian learning of deep models. In AAAI.
-
(2016)
AAAI
-
-
Li, C.1
Chen, C.2
Fan, K.3
Carin, L.4
-
25
-
-
78149485847
-
Trust region Newton method for logistic regression
-
Lin, C.-J.;Weng, R. C.; and Keerthi, S. S. 2008. Trust region newton method for logistic regression. JMLR.
-
(2008)
JMLR
-
-
Lin, C.-J.1
Weng, R.C.2
Keerthi, S.S.3
-
26
-
-
0001025418
-
A practical Bayesian framework for backpropagation networks
-
computation
-
MacKay, D. J. C. 1992. A practical bayesian framework for backpropagation networks. Neural computation.
-
(1992)
Neural
-
-
MacKay, D.J.C.1
-
29
-
-
80053437034
-
On optimization methods for deep learning
-
Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.; Le, Q. V.; and Ng, A. Y. 2011. On optimization methods for deep learning. In ICML.
-
(2011)
ICML
-
-
Ngiam, J.1
Coates, A.2
Lahiri, A.3
Prochnow, B.4
Le, Q.V.5
Ng, A.Y.6
-
30
-
-
84898939739
-
Stochastic gradient Riemannian Langevin dynamics on the probability simplex
-
Patterson, S., and Teh, Y. W. 2013. Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In NIPS.
-
(2013)
NIPS
-
-
Patterson, S.1
Teh, Y.W.2
-
32
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov, R. 2014. Dropout: A simple way to prevent neural networks from overfitting. JMLR.
-
(2014)
JMLR
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
33
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to sequence learning with neural networks. In NIPS.
-
(2014)
NIPS
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
36
-
-
84919786928
-
Doubly stochastic variational bayes for non-conjugate inference
-
Titsias, M., and Lázaro-Gredilla, M. 2014. Doubly stochastic variational bayes for non-conjugate inference. In ICML.
-
(2014)
ICML
-
-
Titsias, M.1
Lázaro-Gredilla, M.2
-
37
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Wan, L.; Zeiler, M.; Zhang, S.; LeCun, Y.; and Fergus, R. 2013. Regularization of neural networks using dropconnect. In ICML.
-
(2013)
ICML
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
LeCun, Y.4
Fergus, R.5
-
38
-
-
80053452150
-
Bayesian learning via stochastic gradient Langevin dynamics
-
Welling, M., and Teh, Y. W. 2011. Bayesian learning via stochastic gradient Langevin dynamics. In ICML.
-
(2011)
ICML
-
-
Welling, M.1
Teh, Y.W.2
-
39
-
-
85083954484
-
Stochastic pooling for regularization of deep convolutional neural networks
-
Zeiler, M., and Fergus, R. 2013. Stochastic pooling for regularization of deep convolutional neural networks. ICLR.
-
(2013)
ICLR
-
-
Zeiler, M.1
Fergus, R.2
|