메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1788-1794

Preconditioned stochastic gradient langevin dynamics for deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; STOCHASTIC SYSTEMS;

EID: 85007196088     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (329)

References (40)
  • 1
    • 84867125855 scopus 로고    scopus 로고
    • Bayesian posterior sampling via stochastic gradient fisher scoring
    • Ahn, S.; Korattikara, A.; and Welling, M. 2012. Bayesian posterior sampling via stochastic gradient fisher scoring. In ICML.
    • (2012) ICML
    • Ahn, S.1    Korattikara, A.2    Welling, M.3
  • 5
    • 84965095225 scopus 로고    scopus 로고
    • On the convergence of stochastic gradient MCMC algorithms with high-order integrators
    • Chen, C.; Ding, N.; and Carin, L. 2015. On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In NIPS.
    • (2015) NIPS
    • Chen, C.1    Ding, N.2    Carin, L.3
  • 6
    • 84919787787 scopus 로고    scopus 로고
    • Stochastic gradient Hamiltonian Monte Carlo
    • Chen, T.; Fox, E. B.; and Guestrin, C. 2014. Stochastic gradient Hamiltonian Monte Carlo. In ICML.
    • (2014) ICML
    • Chen, T.1    Fox, E.B.2    Guestrin, C.3
  • 7
    • 84928534967 scopus 로고    scopus 로고
    • Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
    • Dauphin, Y. N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.; and Bengio, Y. 2014. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS.
    • (2014) NIPS
    • Dauphin, Y.N.1    Pascanu, R.2    Gulcehre, C.3    Cho, K.4    Ganguli, S.5    Bengio, Y.6
  • 8
    • 84965117097 scopus 로고    scopus 로고
    • Equilibrated adaptive learning rates for non-convex optimization
    • Dauphin, Y. N.; de Vries, H.; and Bengio, Y. 2015. Equilibrated adaptive learning rates for non-convex optimization. In NIPS.
    • (2015) NIPS
    • Dauphin, Y.N.1    De Vries, H.2    Bengio, Y.3
  • 10
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgradient methods for online learning and stochastic optimization. JMLR.
    • (2011) JMLR
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 11
    • 84965120997 scopus 로고    scopus 로고
    • Fast second-order stochastic backpropagation for variational inference
    • Fan, K.; Wang, Z.; Beck, J.; Kwok, J.; and Heller, J. 2015. Fast second-order stochastic backpropagation for variational inference. In NIPS.
    • (2015) NIPS
    • Fan, K.1    Wang, Z.2    Beck, J.3    Kwok, J.4    Heller, J.5
  • 13
    • 84965123118 scopus 로고    scopus 로고
    • Deep temporal sigmoid belief networks for sequence modeling
    • Gan, Z.; Li, C.; Henao, R.; Carlson, D.; and Carin, L. 2015. Deep temporal sigmoid belief networks for sequence modeling. NIPS.
    • (2015) NIPS
    • Gan, Z.1    Li, C.2    Henao, R.3    Carlson, D.4    Carin, L.5
  • 14
    • 79952295497 scopus 로고    scopus 로고
    • Riemann manifold langevin and hamiltonian monte carlo methods
    • Series B
    • Girolami, M., and Calderhead, B. 2011. Riemann manifold langevin and hamiltonian monte carlo methods. In JRSS: Series B.
    • (2011) JRSS
    • Girolami, M.1    Calderhead, B.2
  • 16
    • 84969909658 scopus 로고    scopus 로고
    • Probabilistic backpropagation for scalable learning of Bayesian neural networks
    • Hernández-Lobato, J. M., and Adams, R. P. 2015. Probabilistic backpropagation for scalable learning of bayesian neural networks. In ICML.
    • (2015) ICML
    • Hernández-Lobato, J.M.1    Adams, R.P.2
  • 17
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Jarrett, K.; Kavukcuoglu, K.; Ranzato, M.; and LeCun, Y. 2009. What is the best multi-stage architecture for object recognition? In ICCV.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 18
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • Kingma, D., and Ba, J. 2015. Adam: A method for stochastic optimization. ICLR.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 19
    • 84965103544 scopus 로고    scopus 로고
    • Variational dropout and the local reparameterization trick
    • Kingma, D. P.; Salimans, T.; and Welling, M. 2015. Variational dropout and the local reparameterization trick. NIPS.
    • (2015) NIPS
    • Kingma, D.P.1    Salimans, T.2    Welling, M.3
  • 21
    • 84919819551 scopus 로고    scopus 로고
    • Austerity in MCMC land: Cutting the Metropolis-Hastings budget
    • Korattikara, A.; Chen, Y.; and Welling, M. 2014. Austerity in MCMC land: Cutting the Metropolis-Hastings budget. ICML.
    • (2014) ICML
    • Korattikara, A.1    Chen, Y.2    Welling, M.3
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 23
    • 85007273869 scopus 로고    scopus 로고
    • Highorder stochastic gradient thermostats for Bayesian learning of deep models
    • Li, C.; Chen, C.; Fan, K.; and Carin, L. 2016. Highorder stochastic gradient thermostats for Bayesian learning of deep models. In AAAI.
    • (2016) AAAI
    • Li, C.1    Chen, C.2    Fan, K.3    Carin, L.4
  • 25
    • 78149485847 scopus 로고    scopus 로고
    • Trust region Newton method for logistic regression
    • Lin, C.-J.;Weng, R. C.; and Keerthi, S. S. 2008. Trust region newton method for logistic regression. JMLR.
    • (2008) JMLR
    • Lin, C.-J.1    Weng, R.C.2    Keerthi, S.S.3
  • 26
    • 0001025418 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • computation
    • MacKay, D. J. C. 1992. A practical bayesian framework for backpropagation networks. Neural computation.
    • (1992) Neural
    • MacKay, D.J.C.1
  • 30
    • 84898939739 scopus 로고    scopus 로고
    • Stochastic gradient Riemannian Langevin dynamics on the probability simplex
    • Patterson, S., and Teh, Y. W. 2013. Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In NIPS.
    • (2013) NIPS
    • Patterson, S.1    Teh, Y.W.2
  • 31
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E.; Hinton, G. E.; and Williams, R. 1986. Learning representations by back-propagating errors. Nature.
    • (1986) Nature
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.3
  • 33
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to sequence learning with neural networks. In NIPS.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 36
    • 84919786928 scopus 로고    scopus 로고
    • Doubly stochastic variational bayes for non-conjugate inference
    • Titsias, M., and Lázaro-Gredilla, M. 2014. Doubly stochastic variational bayes for non-conjugate inference. In ICML.
    • (2014) ICML
    • Titsias, M.1    Lázaro-Gredilla, M.2
  • 37
    • 84897550107 scopus 로고    scopus 로고
    • Regularization of neural networks using dropconnect
    • Wan, L.; Zeiler, M.; Zhang, S.; LeCun, Y.; and Fergus, R. 2013. Regularization of neural networks using dropconnect. In ICML.
    • (2013) ICML
    • Wan, L.1    Zeiler, M.2    Zhang, S.3    LeCun, Y.4    Fergus, R.5
  • 38
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient Langevin dynamics
    • Welling, M., and Teh, Y. W. 2011. Bayesian learning via stochastic gradient Langevin dynamics. In ICML.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 39
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • Zeiler, M., and Fergus, R. 2013. Stochastic pooling for regularization of deep convolutional neural networks. ICLR.
    • (2013) ICLR
    • Zeiler, M.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.