-
1
-
-
84867125855
-
Bayesian posterior sampling via stochastic gradient Fisher scoring
-
July
-
Ahn, S., Korattikara, A., and Welling, M. Bayesian posterior sampling via stochastic gradient Fisher scoring. In Proceedings of the 29th International Conference on Machine Learning (ICML'12), pp. 1591-1598, July 2012.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning (ICML'12)
, pp. 1591-1598
-
-
Ahn, S.1
Korattikara, A.2
Welling, M.3
-
2
-
-
84919831989
-
Towards scaling up Markov chain Monte Carlo: An adaptive subsampling approach
-
February
-
Bardenet, R., Doucet, A., and Holmes, C. Towards scaling up Markov chain Monte Carlo: An adaptive subsampling approach. In Proceedings of the 30th International Conference on Machine Learning (ICML'14), volume 32, p-p. 405-413, February 2014.
-
(2014)
Proceedings of the 30th International Conference on Machine Learning (ICML'14)
, vol.32
, pp. 405-413
-
-
Bardenet, R.1
Doucet, A.2
Holmes, C.3
-
3
-
-
4243137056
-
Hybrid monte carlo
-
Duane, S., Kennedy, A.D., Pendleton, B.J., and Roweth, D. Hybrid Monte Carlo. Physics Letters B, 195(2):216-222, 1987.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
Roweth, D.4
-
6
-
-
84878919168
-
Stochastic variational inference
-
May
-
Hoffman, M.D., Blei, D. M., Wang, C, and Paisley, J. Stochastic variational inference. Journal of Maching Learning Research, 14(1): 1303-1347, May 2013.
-
(2013)
Journal of Maching Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
7
-
-
0009349032
-
A generalized guided Monte Carlo algorithm
-
Horowitz, A.M. A generalized guided Monte Carlo algorithm. Physics Letters B, 268(2):247-252, 1991.
-
(1991)
Physics Letters B
, vol.268
, Issue.2
, pp. 247-252
-
-
Horowitz, A.M.1
-
8
-
-
84919819551
-
Austerity in MCMC land: Cutting the Metropolis-Hastings budget
-
February
-
Korattikara, A., Chen, Y., and Welling, M. Austerity in MCMC land: Cutting the Metropolis-Hastings budget. In Proceedings of the 30th International Conference on Machine Learning (ICML'14), volume 32, pp. 181-189, February 2014.
-
(2014)
Proceedings of the 30th International Conference on Machine Learning (ICML'14)
, vol.32
, pp. 181-189
-
-
Korattikara, A.1
Chen, Y.2
Welling, M.3
-
12
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
January
-
Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4): 1574-1609, January 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
17
-
-
84865405760
-
Relation of a new interpretation of stochastic differential equations to Ito process
-
Shi, J., Chen, T., Yuan, R., Yuan, B., and Ao, P. Relation of a new interpretation of stochastic differential equations to Ito process. Journal of Statistical Physics, 148(3): 579-590, 2012.
-
(2012)
Journal of Statistical Physics
, vol.148
, Issue.3
, pp. 579-590
-
-
Shi, J.1
Chen, T.2
Yuan, R.3
Yuan, B.4
Ao, P.5
-
18
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
May
-
Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. On the importance of initialization and momentum in deep learning. In Proceedings of the 30th International Conference on Machine Learning (ICML'13), volume 28, p-p. 1139-1147, May 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML'13)
, vol.28
, pp. 1139-1147
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.E.3
Hinton, G.E.4
-
19
-
-
36149027699
-
On the theory of the brownian motion II
-
Wang, M.C. and Uhlenbeck, G.E. On the Theory of the Brownian Motion II. Reviews of Modern Physics, 17(2-3):323, 1945.
-
(1945)
Reviews of Modern Physics
, vol.17
, Issue.2-3
, pp. 323
-
-
Wang, M.C.1
Uhlenbeck, G.E.2
-
20
-
-
84897559913
-
Adaptive Hamiltonian and Riemann manifold Monte Carlo
-
May
-
Wang, Z., Mohamed, S., and Nando, D. Adaptive Hamiltonian and Riemann manifold Monte Carlo. In Proceedings of the 30th International Conference on Machine Learning (ICML'13), volume 28, pp. 1462-1470, May 2013.
-
(2013)
Proceedings of the 30th International Conference on Machine Learning (ICML'13)
, vol.28
, pp. 1462-1470
-
-
Wang, Z.1
Mohamed, S.2
Nando, D.3
-
22
-
-
33745501553
-
Existence and construction of dynamical potential in nonequilibrium processes without detailed balance
-
Yin, L. and Ao, P. Existence and construction of dynamical potential in nonequilibrium processes without detailed balance. Journal of Physics A: Mathematical and General, 39(27):8593, 2006.
-
(2006)
Journal of Physics A: Mathematical and General
, vol.39
, Issue.27
, pp. 8593
-
-
Yin, L.1
Ao, P.2
|