-
3
-
-
84898931970
-
Training and analysing deep recurrent neural networks
-
M. Hermans and B. Schrauwen. Training and analysing deep recurrent neural networks. In NIPS, 2013.
-
(2013)
NIPS
-
-
Hermans, M.1
Schrauwen, B.2
-
4
-
-
80053451847
-
Learning recurrent neural networks with hessian-free optimization
-
J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free optimization. In ICML, 2011.
-
(2011)
ICML
-
-
Martens, J.1
Sutskever, I.2
-
5
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICML, 2013.
-
(2013)
ICML
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
7
-
-
85157999846
-
Modeling human motion using binary latent variables
-
G. Taylor, G. Hinton, and S. Roweis. Modeling human motion using binary latent variables. In NIPS, 2006.
-
(2006)
NIPS
-
-
Taylor, G.1
Hinton, G.2
Roweis, S.3
-
8
-
-
34547997421
-
Learning multilevel distributed representations for high-dimensional sequences
-
I. Sutskever and G. Hinton. Learning multilevel distributed representations for high-dimensional sequences. In AISTATS, 2007.
-
(2007)
AISTATS
-
-
Sutskever, I.1
Hinton, G.2
-
9
-
-
84858768256
-
The recurrent temporal restricted boltzmann machine
-
I. Sutskever, G. Hinton, and G. Taylor. The recurrent temporal restricted boltzmann machine. In NIPS, 2009.
-
(2009)
NIPS
-
-
Sutskever, I.1
Hinton, G.2
Taylor, G.3
-
10
-
-
84867129058
-
Modeling temporal dependencies in highdimensional sequences: Application to polyphonic music generation and transcription
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in highdimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012.
-
(2012)
ICML
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
11
-
-
84919828137
-
Structured recurrent temporal restricted boltzmann machines
-
R. Mittelman, B. Kuipers, S. Savarese, and H. Lee. Structured recurrent temporal restricted boltzmann machines. In ICML, 2014.
-
(2014)
ICML
-
-
Mittelman, R.1
Kuipers, B.2
Savarese, S.3
Lee, H.4
-
12
-
-
85083952489
-
Auto-encoding variational Bayes
-
D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
13
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
14
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
-
(2014)
ICML
-
-
Rezende, D.1
Mohamed, S.2
Wierstra, D.3
-
15
-
-
84965104862
-
Learning deep sigmoid belief networks with data augmentation
-
Z. Gan, R. Henao, D. Carlson, and L. Carin. Learning deep sigmoid belief networks with data augmentation. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Gan, Z.1
Henao, R.2
Carlson, D.3
Carin, L.4
-
16
-
-
44049116681
-
Connectionist learning of belief networks
-
R. Neal. Connectionist learning of belief networks. In Artificial intelligence, 1992.
-
(1992)
Artificial Intelligence
-
-
Neal, R.1
-
18
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. Hinton. Training products of experts by minimizing contrastive divergence. In Neural computation, 2002.
-
(2002)
Neural Computation
-
-
Hinton, G.1
-
19
-
-
77956556686
-
Replicated softmax: An undirected topic model
-
G. Hinton and R. Salakhutdinov. Replicated softmax: an undirected topic model. In NIPS, 2009.
-
(2009)
NIPS
-
-
Hinton, G.1
Salakhutdinov, R.2
-
20
-
-
0029652445
-
The "wake-sleep" algorithm for unsupervised neural networks
-
G. Hinton, P. Dayan, B. Frey, and R. Neal. The "wake-sleep" algorithm for unsupervised neural networks. In Science, 1995.
-
(1995)
Science
-
-
Hinton, G.1
Dayan, P.2
Frey, B.3
Neal, R.4
-
22
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
P. Werbos. Backpropagation through time: what it does and how to do it. In Proc. of the IEEE, 1990.
-
(1990)
Proc. of the IEEE
-
-
Werbos, P.1
-
23
-
-
71149118574
-
Factored conditional restricted boltzmann machines for modeling motion style
-
G. Taylor and G. Hinton. Factored conditional restricted boltzmann machines for modeling motion style. In ICML, 2009.
-
(2009)
ICML
-
-
Taylor, G.1
Hinton, G.2
-
24
-
-
84970024465
-
Scalable deep poisson factor analysis for topic modeling
-
Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep poisson factor analysis for topic modeling. In ICML, 2015.
-
(2015)
ICML
-
-
Gan, Z.1
Chen, C.2
Henao, R.3
Carlson, D.4
Carin, L.5
-
25
-
-
79551498700
-
Incremental sigmoid belief networks for grammar learning
-
J. Henderson and I. Titov. Incremental sigmoid belief networks for grammar learning. In JMLR, 2010.
-
(2010)
JMLR
-
-
Henderson, J.1
Titov, I.2
-
29
-
-
84965158187
-
A recurrent latent variable model for sequential data
-
J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio. A recurrent latent variable model for sequential data. In NIPS, 2015.
-
(2015)
NIPS
-
-
Chung, J.1
Kastner, K.2
Dinh, L.3
Goel, K.4
Courville, A.5
Bengio, Y.6
-
30
-
-
84937841440
-
Dynamic rank factor model for text streams
-
S. Han, L. Du, E. Salazar, and L. Carin. Dynamic rank factor model for text streams. In NIPS, 2014.
-
(2014)
NIPS
-
-
Han, S.1
Du, L.2
Salazar, E.3
Carin, L.4
-
31
-
-
84965165376
-
Nonparametric Bayesian factor analysis for dynamic count matrices
-
A. Acharya, J. Ghosh, and M. Zhou. Nonparametric Bayesian factor analysis for dynamic count matrices. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Acharya, A.1
Ghosh, J.2
Zhou, M.3
-
32
-
-
84965120997
-
Fast second-order stochastic backpropagation for variational inference
-
K. Fan, Z. Wang, J. Kwok, and K. Heller. Fast Second-Order Stochastic Backpropagation for Variational Inference. In NIPS, 2015.
-
(2015)
NIPS
-
-
Fan, K.1
Wang, Z.2
Kwok, J.3
Heller, K.4
|