메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2467-2475

Deep temporal sigmoid belief networks for sequence modeling

Author keywords

[No Author keywords available]

Indexed keywords

INFERENCE ENGINES;

EID: 84965123118     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (85)

References (32)
  • 3
    • 84898931970 scopus 로고    scopus 로고
    • Training and analysing deep recurrent neural networks
    • M. Hermans and B. Schrauwen. Training and analysing deep recurrent neural networks. In NIPS, 2013.
    • (2013) NIPS
    • Hermans, M.1    Schrauwen, B.2
  • 4
    • 80053451847 scopus 로고    scopus 로고
    • Learning recurrent neural networks with hessian-free optimization
    • J. Martens and I. Sutskever. Learning recurrent neural networks with hessian-free optimization. In ICML, 2011.
    • (2011) ICML
    • Martens, J.1    Sutskever, I.2
  • 5
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICML, 2013.
    • (2013) ICML
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 7
    • 85157999846 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • G. Taylor, G. Hinton, and S. Roweis. Modeling human motion using binary latent variables. In NIPS, 2006.
    • (2006) NIPS
    • Taylor, G.1    Hinton, G.2    Roweis, S.3
  • 8
    • 34547997421 scopus 로고    scopus 로고
    • Learning multilevel distributed representations for high-dimensional sequences
    • I. Sutskever and G. Hinton. Learning multilevel distributed representations for high-dimensional sequences. In AISTATS, 2007.
    • (2007) AISTATS
    • Sutskever, I.1    Hinton, G.2
  • 9
    • 84858768256 scopus 로고    scopus 로고
    • The recurrent temporal restricted boltzmann machine
    • I. Sutskever, G. Hinton, and G. Taylor. The recurrent temporal restricted boltzmann machine. In NIPS, 2009.
    • (2009) NIPS
    • Sutskever, I.1    Hinton, G.2    Taylor, G.3
  • 10
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in highdimensional sequences: Application to polyphonic music generation and transcription
    • N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies in highdimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012.
    • (2012) ICML
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, P.3
  • 11
    • 84919828137 scopus 로고    scopus 로고
    • Structured recurrent temporal restricted boltzmann machines
    • R. Mittelman, B. Kuipers, S. Savarese, and H. Lee. Structured recurrent temporal restricted boltzmann machines. In ICML, 2014.
    • (2014) ICML
    • Mittelman, R.1    Kuipers, B.2    Savarese, S.3    Lee, H.4
  • 12
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 13
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 14
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • D. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, 2014.
    • (2014) ICML
    • Rezende, D.1    Mohamed, S.2    Wierstra, D.3
  • 15
    • 84965104862 scopus 로고    scopus 로고
    • Learning deep sigmoid belief networks with data augmentation
    • Z. Gan, R. Henao, D. Carlson, and L. Carin. Learning deep sigmoid belief networks with data augmentation. In AISTATS, 2015.
    • (2015) AISTATS
    • Gan, Z.1    Henao, R.2    Carlson, D.3    Carin, L.4
  • 16
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • R. Neal. Connectionist learning of belief networks. In Artificial intelligence, 1992.
    • (1992) Artificial Intelligence
    • Neal, R.1
  • 18
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton. Training products of experts by minimizing contrastive divergence. In Neural computation, 2002.
    • (2002) Neural Computation
    • Hinton, G.1
  • 19
    • 77956556686 scopus 로고    scopus 로고
    • Replicated softmax: An undirected topic model
    • G. Hinton and R. Salakhutdinov. Replicated softmax: an undirected topic model. In NIPS, 2009.
    • (2009) NIPS
    • Hinton, G.1    Salakhutdinov, R.2
  • 20
    • 0029652445 scopus 로고
    • The "wake-sleep" algorithm for unsupervised neural networks
    • G. Hinton, P. Dayan, B. Frey, and R. Neal. The "wake-sleep" algorithm for unsupervised neural networks. In Science, 1995.
    • (1995) Science
    • Hinton, G.1    Dayan, P.2    Frey, B.3    Neal, R.4
  • 21
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. In COURSERA: Neural Networks for Machine Learning, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2
  • 22
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • P. Werbos. Backpropagation through time: what it does and how to do it. In Proc. of the IEEE, 1990.
    • (1990) Proc. of the IEEE
    • Werbos, P.1
  • 23
    • 71149118574 scopus 로고    scopus 로고
    • Factored conditional restricted boltzmann machines for modeling motion style
    • G. Taylor and G. Hinton. Factored conditional restricted boltzmann machines for modeling motion style. In ICML, 2009.
    • (2009) ICML
    • Taylor, G.1    Hinton, G.2
  • 24
    • 84970024465 scopus 로고    scopus 로고
    • Scalable deep poisson factor analysis for topic modeling
    • Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep poisson factor analysis for topic modeling. In ICML, 2015.
    • (2015) ICML
    • Gan, Z.1    Chen, C.2    Henao, R.3    Carlson, D.4    Carin, L.5
  • 25
    • 79551498700 scopus 로고    scopus 로고
    • Incremental sigmoid belief networks for grammar learning
    • J. Henderson and I. Titov. Incremental sigmoid belief networks for grammar learning. In JMLR, 2010.
    • (2010) JMLR
    • Henderson, J.1    Titov, I.2
  • 30
    • 84937841440 scopus 로고    scopus 로고
    • Dynamic rank factor model for text streams
    • S. Han, L. Du, E. Salazar, and L. Carin. Dynamic rank factor model for text streams. In NIPS, 2014.
    • (2014) NIPS
    • Han, S.1    Du, L.2    Salazar, E.3    Carin, L.4
  • 31
    • 84965165376 scopus 로고    scopus 로고
    • Nonparametric Bayesian factor analysis for dynamic count matrices
    • A. Acharya, J. Ghosh, and M. Zhou. Nonparametric Bayesian factor analysis for dynamic count matrices. In AISTATS, 2015.
    • (2015) AISTATS
    • Acharya, A.1    Ghosh, J.2    Zhou, M.3
  • 32
    • 84965120997 scopus 로고    scopus 로고
    • Fast second-order stochastic backpropagation for variational inference
    • K. Fan, Z. Wang, J. Kwok, and K. Heller. Fast Second-Order Stochastic Backpropagation for Variational Inference. In NIPS, 2015.
    • (2015) NIPS
    • Fan, K.1    Wang, Z.2    Kwok, J.3    Heller, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.