-
1
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning long-term dependencies with gradient descent is difficult. TNN.
-
(1994)
TNN
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
5
-
-
84920936716
-
Differential topic models
-
Chen, C.; Buntine, W.; Ding, N.; Xie, L.; and Du, L. 2015. Differential topic models. TPAMI.
-
(2015)
TPAMI
-
-
Chen, C.1
Buntine, W.2
Ding, N.3
Xie, L.4
Du, L.5
-
6
-
-
84965095225
-
On the convergence of stochastic gradient MCMC algorithms with high-order integrators
-
Chen, C.; Ding, N.; and Carin, L. 2015. On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In NIPS.
-
(2015)
NIPS
-
-
Chen, C.1
Ding, N.2
Carin, L.3
-
7
-
-
84919787787
-
Stochastic gradient hamiltonian monte carlo
-
Chen, T.; Fox, E. B.; and Guestrin, C. 2014. Stochastic gradient Hamiltonian Monte Carlo. In ICML.
-
(2014)
ICML
-
-
Chen, T.1
Fox, E.B.2
Guestrin, C.3
-
8
-
-
84937959155
-
Bayesian sampling using stochastic gradient thermostats
-
Ding, N.; Fang, Y.; Babbush, R.; Chen, C.; Skeel, R. D.; and Neven, H. 2014. Bayesian sampling using stochastic gradient thermostats. In NIPS.
-
(2014)
NIPS
-
-
Ding, N.1
Fang, Y.2
Babbush, R.3
Chen, C.4
Skeel, R.D.5
Neven, H.6
-
9
-
-
84965120997
-
Fast second-order stochastic backpropagation for variational inference
-
Fan, K.; Wang, Z.; Beck, J.; Kwok, J.; and Heller, K. 2015. Fast second-order stochastic backpropagation for variational inference. In NIPS.
-
(2015)
NIPS
-
-
Fan, K.1
Wang, Z.2
Beck, J.3
Kwok, J.4
Heller, K.5
-
11
-
-
84970024465
-
Scalable deep Poisson factor analysis for topic modeling
-
Gan, Z.; Chen, C.; Henao, R.; Carlson, D.; and Carin, L. 2015a. Scalable deep Poisson factor analysis for topic modeling. In ICML.
-
(2015)
ICML
-
-
Gan, Z.1
Chen, C.2
Henao, R.3
Carlson, D.4
Carin, L.5
-
12
-
-
84965104862
-
Learning deep sigmoid belief networks with data augmentation
-
Gan, Z.; Henao, R.; Carlson, D.; and Carin, L. 2015b. Learning deep sigmoid belief networks with data augmentation. In AISTATS.
-
(2015)
AISTATS
-
-
Gan, Z.1
Henao, R.2
Carlson, D.3
Carin, L.4
-
13
-
-
84965123118
-
Deep temporal sigmoid belief networks for sequence modeling
-
Gan, Z.; Li, C.; Henao, R.; Carlson, D.; and Carin, L. 2015c. Deep temporal sigmoid belief networks for sequence modeling. NIPS.
-
(2015)
NIPS
-
-
Gan, Z.1
Li, C.2
Henao, R.3
Carlson, D.4
Carin, L.5
-
16
-
-
84969909658
-
Probabilistic backpropagation for scalable learning of Bayesian neural networks
-
Hernández-Lobato, J. M., and Adams, R. P. 2015. Probabilistic backpropagation for scalable learning of Bayesian neural networks. In ICML.
-
(2015)
ICML
-
-
Hernández-Lobato, J.M.1
Adams, R.P.2
-
17
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. 2002. Training products of experts by minimizing contrastive divergence. In Neural computation.
-
(2002)
Neural Computation
-
-
Hinton, G.E.1
-
18
-
-
85162005069
-
Online learning for latent Dirichlet allocation
-
Hoffman, M.; Bach, F. R.; and Blei, D. M. 2010. Online learning for latent Dirichlet allocation. In NIPS.
-
(2010)
NIPS
-
-
Hoffman, M.1
Bach, F.R.2
Blei, D.M.3
-
20
-
-
85083952489
-
Auto-encoding variational Bayes
-
Kingma, D. P., and Welling, M. 2014. Auto-encoding variational Bayes. In ICLR.
-
(2014)
ICLR
-
-
Kingma, D.P.1
Welling, M.2
-
23
-
-
84874883342
-
Rational construction of stochastic numerical methods for molecular sampling
-
Research Express
-
Leimkuhler, B., and Matthews, C. 2013. Rational construction of stochastic numerical methods for molecular sampling. Applied Math. Research Express.
-
(2013)
Applied Math
-
-
Leimkuhler, B.1
Matthews, C.2
-
25
-
-
85007196088
-
Preconditioned stochastic gradient Langevin dynamics for deep neural networks
-
Li, C.; Chen, C.; Carlson, D.; and Carin, L. 2016. Preconditioned stochastic gradient Langevin dynamics for deep neural networks. In AAAI.
-
(2016)
AAAI.
-
-
Li, C.1
Chen, C.2
Carlson, D.3
Carin, L.4
-
26
-
-
78149485847
-
Trust region Newton method for logistic regression
-
Lin, C.-J.;Weng, R. C.; and Keerthi, S. S. 2008. Trust region newton method for logistic regression. JMLR.
-
(2008)
JMLR
-
-
Lin, C.-J.1
Weng, R.C.2
Keerthi, S.S.3
-
27
-
-
84965156531
-
A complete recipe for stochastic gradient MCMC
-
Ma, Y. A.; Chen, T.; and Fox, E. B. 2015. A complete recipe for stochastic gradient MCMC. NIPS.
-
(2015)
NIPS
-
-
Ma, Y.A.1
Chen, T.2
Fox, E.B.3
-
28
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
MacKay, D. 1992. A practical Bayesian framework for backpropagation networks. Neural computation.
-
(1992)
Neural Computation
-
-
MacKay, D.1
-
29
-
-
77956541496
-
Deep learning via Hessian-free optimization
-
Martens, J. 2010. Deep learning via Hessian-free optimization. In ICML.
-
(2010)
ICML
-
-
Martens, J.1
-
30
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
33
-
-
84898939739
-
Stochastic gradient Riemannian Langevin dynamics on the probability simplex
-
Patterson, S., and Teh, Y. W. 2013. Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In NIPS.
-
(2013)
NIPS
-
-
Patterson, S.1
Teh, Y.W.2
-
34
-
-
85083953057
-
A generative model for deep convolutional learning
-
Pu, Y.; Yuan, X.; and Carin, L. 2015. A generative model for deep convolutional learning. In ICLR workshop.
-
(2015)
ICLR Workshop
-
-
Pu, Y.1
Yuan, X.2
Carin, L.3
-
38
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D. E.; E., H. G.; andWilliams, R. J. 1986. Learning representations by back-propagating errors. Nature.
-
(1986)
Nature
-
-
Rumelhart, D.E.1
Hg, E.2
Williams, R.J.3
-
41
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013. On the importance of initialization and momentum in deep learning. In ICML.
-
(2013)
ICML
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.3
Hinton, G.4
-
42
-
-
84919786928
-
Doubly stochastic variational Bayes for non-conjugate inference
-
Titsias, M., and Ĺazaro-Gredilla, M. 2014. Doubly stochastic variational Bayes for non-conjugate inference. In ICML.
-
(2014)
ICML.
-
-
Titsias, M.1
Ĺazaro-Gredilla, M.2
-
43
-
-
80053452150
-
Bayesian learning via stochastic gradient Langevin dynamics
-
Welling, M., and Teh, Y. W. 2011. Bayesian learning via stochastic gradient Langevin dynamics. In ICML.
-
(2011)
ICML
-
-
Welling, M.1
Teh, Y.W.2
-
45
-
-
84920998554
-
Negative binomial process count and mixture modeling
-
Zhou, M., and Carin, L. 2015. Negative binomial process count and mixture modeling. TPAMI.
-
(2015)
TPAMI
-
-
Zhou, M.1
Carin, L.2
|