메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1795-1801

High-Order stochastic gradient thermostats for Bayesian learning of deep models

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; CONTINUOUS TIME SYSTEMS; STOCHASTIC SYSTEMS; THERMOSTATS;

EID: 85007273869     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (21)

References (45)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y.; Simard, P.; and Frasconi, P. 1994. Learning long-term dependencies with gradient descent is difficult. TNN.
    • (1994) TNN
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 6
    • 84965095225 scopus 로고    scopus 로고
    • On the convergence of stochastic gradient MCMC algorithms with high-order integrators
    • Chen, C.; Ding, N.; and Carin, L. 2015. On the convergence of stochastic gradient MCMC algorithms with high-order integrators. In NIPS.
    • (2015) NIPS
    • Chen, C.1    Ding, N.2    Carin, L.3
  • 7
    • 84919787787 scopus 로고    scopus 로고
    • Stochastic gradient hamiltonian monte carlo
    • Chen, T.; Fox, E. B.; and Guestrin, C. 2014. Stochastic gradient Hamiltonian Monte Carlo. In ICML.
    • (2014) ICML
    • Chen, T.1    Fox, E.B.2    Guestrin, C.3
  • 9
    • 84965120997 scopus 로고    scopus 로고
    • Fast second-order stochastic backpropagation for variational inference
    • Fan, K.; Wang, Z.; Beck, J.; Kwok, J.; and Heller, K. 2015. Fast second-order stochastic backpropagation for variational inference. In NIPS.
    • (2015) NIPS
    • Fan, K.1    Wang, Z.2    Beck, J.3    Kwok, J.4    Heller, K.5
  • 11
    • 84970024465 scopus 로고    scopus 로고
    • Scalable deep Poisson factor analysis for topic modeling
    • Gan, Z.; Chen, C.; Henao, R.; Carlson, D.; and Carin, L. 2015a. Scalable deep Poisson factor analysis for topic modeling. In ICML.
    • (2015) ICML
    • Gan, Z.1    Chen, C.2    Henao, R.3    Carlson, D.4    Carin, L.5
  • 12
    • 84965104862 scopus 로고    scopus 로고
    • Learning deep sigmoid belief networks with data augmentation
    • Gan, Z.; Henao, R.; Carlson, D.; and Carin, L. 2015b. Learning deep sigmoid belief networks with data augmentation. In AISTATS.
    • (2015) AISTATS
    • Gan, Z.1    Henao, R.2    Carlson, D.3    Carin, L.4
  • 13
    • 84965123118 scopus 로고    scopus 로고
    • Deep temporal sigmoid belief networks for sequence modeling
    • Gan, Z.; Li, C.; Henao, R.; Carlson, D.; and Carin, L. 2015c. Deep temporal sigmoid belief networks for sequence modeling. NIPS.
    • (2015) NIPS
    • Gan, Z.1    Li, C.2    Henao, R.3    Carlson, D.4    Carin, L.5
  • 14
    • 84872578524 scopus 로고    scopus 로고
    • Deep sparse rectifier neural networks
    • Glorot, X.; Bordes, A.; and Bengio, Y. 2011. Deep sparse rectifier neural networks. In AISTATS.
    • (2011) AISTATS
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 16
    • 84969909658 scopus 로고    scopus 로고
    • Probabilistic backpropagation for scalable learning of Bayesian neural networks
    • Hernández-Lobato, J. M., and Adams, R. P. 2015. Probabilistic backpropagation for scalable learning of Bayesian neural networks. In ICML.
    • (2015) ICML
    • Hernández-Lobato, J.M.1    Adams, R.P.2
  • 17
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. 2002. Training products of experts by minimizing contrastive divergence. In Neural computation.
    • (2002) Neural Computation
    • Hinton, G.E.1
  • 18
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent Dirichlet allocation
    • Hoffman, M.; Bach, F. R.; and Blei, D. M. 2010. Online learning for latent Dirichlet allocation. In NIPS.
    • (2010) NIPS
    • Hoffman, M.1    Bach, F.R.2    Blei, D.M.3
  • 20
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • Kingma, D. P., and Welling, M. 2014. Auto-encoding variational Bayes. In ICLR.
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 23
    • 84874883342 scopus 로고    scopus 로고
    • Rational construction of stochastic numerical methods for molecular sampling
    • Research Express
    • Leimkuhler, B., and Matthews, C. 2013. Rational construction of stochastic numerical methods for molecular sampling. Applied Math. Research Express.
    • (2013) Applied Math
    • Leimkuhler, B.1    Matthews, C.2
  • 25
    • 85007196088 scopus 로고    scopus 로고
    • Preconditioned stochastic gradient Langevin dynamics for deep neural networks
    • Li, C.; Chen, C.; Carlson, D.; and Carin, L. 2016. Preconditioned stochastic gradient Langevin dynamics for deep neural networks. In AAAI.
    • (2016) AAAI.
    • Li, C.1    Chen, C.2    Carlson, D.3    Carin, L.4
  • 26
    • 78149485847 scopus 로고    scopus 로고
    • Trust region Newton method for logistic regression
    • Lin, C.-J.;Weng, R. C.; and Keerthi, S. S. 2008. Trust region newton method for logistic regression. JMLR.
    • (2008) JMLR
    • Lin, C.-J.1    Weng, R.C.2    Keerthi, S.S.3
  • 27
    • 84965156531 scopus 로고    scopus 로고
    • A complete recipe for stochastic gradient MCMC
    • Ma, Y. A.; Chen, T.; and Fox, E. B. 2015. A complete recipe for stochastic gradient MCMC. NIPS.
    • (2015) NIPS
    • Ma, Y.A.1    Chen, T.2    Fox, E.B.3
  • 28
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay, D. 1992. A practical Bayesian framework for backpropagation networks. Neural computation.
    • (1992) Neural Computation
    • MacKay, D.1
  • 29
    • 77956541496 scopus 로고    scopus 로고
    • Deep learning via Hessian-free optimization
    • Martens, J. 2010. Deep learning via Hessian-free optimization. In ICML.
    • (2010) ICML
    • Martens, J.1
  • 30
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • Mnih, A., and Gregor, K. 2014. Neural variational inference and learning in belief networks. In ICML.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 33
    • 84898939739 scopus 로고    scopus 로고
    • Stochastic gradient Riemannian Langevin dynamics on the probability simplex
    • Patterson, S., and Teh, Y. W. 2013. Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In NIPS.
    • (2013) NIPS
    • Patterson, S.1    Teh, Y.W.2
  • 34
    • 85083953057 scopus 로고    scopus 로고
    • A generative model for deep convolutional learning
    • Pu, Y.; Yuan, X.; and Carin, L. 2015. A generative model for deep convolutional learning. In ICLR workshop.
    • (2015) ICLR Workshop
    • Pu, Y.1    Yuan, X.2    Carin, L.3
  • 38
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E.; E., H. G.; andWilliams, R. J. 1986. Learning representations by back-propagating errors. Nature.
    • (1986) Nature
    • Rumelhart, D.E.1    Hg, E.2    Williams, R.J.3
  • 41
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013. On the importance of initialization and momentum in deep learning. In ICML.
    • (2013) ICML
    • Sutskever, I.1    Martens, J.2    Dahl, G.3    Hinton, G.4
  • 42
    • 84919786928 scopus 로고    scopus 로고
    • Doubly stochastic variational Bayes for non-conjugate inference
    • Titsias, M., and Ĺazaro-Gredilla, M. 2014. Doubly stochastic variational Bayes for non-conjugate inference. In ICML.
    • (2014) ICML.
    • Titsias, M.1    Ĺazaro-Gredilla, M.2
  • 43
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient Langevin dynamics
    • Welling, M., and Teh, Y. W. 2011. Bayesian learning via stochastic gradient Langevin dynamics. In ICML.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 45
    • 84920998554 scopus 로고    scopus 로고
    • Negative binomial process count and mixture modeling
    • Zhou, M., and Carin, L. 2015. Negative binomial process count and mixture modeling. TPAMI.
    • (2015) TPAMI
    • Zhou, M.1    Carin, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.