-
1
-
-
84919787787
-
Stochastic gradient Hamiltonian Monte Carlo
-
T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In ICML, 2014.
-
(2014)
ICML
-
-
Chen, T.1
Fox, E.B.2
Guestrin, C.3
-
2
-
-
84937959155
-
Bayesian sampling using stochastic gradient thermostats
-
N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven. Bayesian sampling using stochastic gradient thermostats. In NIPS, 2014.
-
(2014)
NIPS
-
-
Ding, N.1
Fang, Y.2
Babbush, R.3
Chen, C.4
Skeel, R.D.5
Neven, H.6
-
4
-
-
80053452150
-
Bayesian learning via stochastic gradient Langevin dynamics
-
M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
-
(2011)
ICML
-
-
Welling, M.1
Teh, Y.W.2
-
5
-
-
84962855547
-
-
Technical Report arXiv:1409.0578, University of Oxford, UK, Sep
-
Y. W. Teh, A. H. Thiery, and S. J. Vollmer. Consistency and fluctuations for stochastic gradient Langevin dynamics. Technical Report arXiv:1409.0578, University of Oxford, UK, Sep. 2014. URL http://arxiv.org/abs/1409.0578.
-
(2014)
Consistency and Fluctuations for Stochastic Gradient Langevin Dynamics
-
-
Teh, Y.W.1
Thiery, A.H.2
Vollmer, S.J.3
-
6
-
-
84962870797
-
-
Technical Report arXiv:1501.00438, University of Oxford, UK, January
-
S. J. Vollmer, K. C. Zygalakis, and Y. W. Teh. (Non-) asymptotic properties of stochastic gradient Langevin dynamics. Technical Report arXiv:1501.00438, University of Oxford, UK, January 2015. URL http://arxiv.org/abs/1501.00438.
-
(2015)
(Non-) Asymptotic Properties of Stochastic Gradient Langevin Dynamics
-
-
Vollmer, S.J.1
Zygalakis, K.C.2
Teh, Y.W.3
-
7
-
-
84969498066
-
The fundamental incompatibility of Hamiltonian Monte Carlo and data subsampling
-
M. Betancourt. The fundamental incompatibility of Hamiltonian Monte Carlo and data subsampling. In ICML, 2015.
-
(2015)
ICML
-
-
Betancourt, M.1
-
8
-
-
84919935741
-
Approximation analysis of stochastic gradient Langevin dynamics by using Fokker-Planck equation and Itõ process
-
I. Sato and H. Nakagawa. Approximation analysis of stochastic gradient Langevin dynamics by using Fokker-Planck equation and Itõ process. In ICML, 2014.
-
(2014)
ICML
-
-
Sato, I.1
Nakagawa, H.2
-
10
-
-
84923955649
-
Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics
-
A. Abdulle, G. Vilmart, and K. C. Zygalakis. Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics. SIAM J. NUMER. ANAL., 53(1):1-16, 2015.
-
(2015)
SIAM J. NUMER. ANAL.
, vol.53
, Issue.1
, pp. 1-16
-
-
Abdulle, A.1
Vilmart, G.2
Zygalakis, K.C.3
-
12
-
-
77950857322
-
Construction of numerical time-average and stationary measures via Poisson equations
-
J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov. Construction of numerical time-average and stationary measures via Poisson equations. SIAM J. NUMER. ANAL., 48(2):552-577, 2010.
-
(2010)
SIAM J. NUMER. ANAL.
, vol.48
, Issue.2
, pp. 552-577
-
-
Mattingly, J.C.1
Stuart, A.M.2
Tretyakov, M.V.3
-
14
-
-
0002651817
-
La theorie generalie de la mesure dans son application a l'etude de systemes dynamiques de la mecanique non-lineaire
-
N. N. Bogoliubov and N. M. Krylov. La theorie generalie de la mesure dans son application a l'etude de systemes dynamiques de la mecanique non-lineaire. Ann. Math. II (in French), 38(1):65-113, 1937.
-
(1937)
Ann. Math. II (in French)
, vol.38
, Issue.1
, pp. 65-113
-
-
Bogoliubov, N.N.1
Krylov, N.M.2
-
15
-
-
84874883342
-
Rational construction of stochastic numerical methods for molecular sampling
-
B. Leimkuhler and C. Matthews. Rational construction of stochastic numerical methods for molecular sampling. AMRX, 2013(1):34-56, 2013.
-
(2013)
AMRX
, vol.2013
, Issue.1
, pp. 34-56
-
-
Leimkuhler, B.1
Matthews, C.2
-
17
-
-
85162005069
-
Online learning for latent Dirichlet allocation
-
M. D. Hoffman, D. M. Blei, and F. Bach. Online learning for latent Dirichlet allocation. In NIPS, 2010.
-
(2010)
NIPS
-
-
Hoffman, M.D.1
Blei, D.M.2
Bach, F.3
-
18
-
-
84970024465
-
Scalable deep Poisson factor analysis for topic modeling
-
Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep Poisson factor analysis for topic modeling. In ICML, 2015.
-
(2015)
ICML
-
-
Gan, Z.1
Chen, C.2
Henao, R.3
Carlson, D.4
Carin, L.5
-
19
-
-
84898939739
-
Stochastic gradient Riemannian Langevin dynamics on the probability simplex
-
S. Patterson and Y. W. Teh. Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In NIPS, 2013.
-
(2013)
NIPS
-
-
Patterson, S.1
Teh, Y.W.2
-
20
-
-
84965104862
-
Learning deep sigmoid belief networks with data augmentation
-
Z. Gan, R. Henao, D. Carlson, and L. Carin. Learning deep sigmoid belief networks with data augmentation. In AISTATS, 2015.
-
(2015)
AISTATS
-
-
Gan, Z.1
Henao, R.2
Carlson, D.3
Carin, L.4
-
21
-
-
56449102578
-
On the quantitative analysis of deep belief networks
-
R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In ICML, 2008.
-
(2008)
ICML
-
-
Salakhutdinov, R.1
Murray, I.2
-
22
-
-
84919786239
-
Neural variational inference and learning in belief networks
-
A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
-
(2014)
ICML
-
-
Mnih, A.1
Gregor, K.2
-
23
-
-
84865579671
-
Weak backward error analysis for SDEs
-
A. Debussche and E. Faou. Weak backward error analysis for SDEs. SIAM J. NUMER. ANAL., 50(3):1734-1752, 2012.
-
(2012)
SIAM J. NUMER. ANAL.
, vol.50
, Issue.3
, pp. 1734-1752
-
-
Debussche, A.1
Faou, E.2
-
24
-
-
84907019784
-
Weak backward error analysis for overdamped Langevin processes
-
M. Kopec. Weak backward error analysis for overdamped Langevin processes. IMA J. NUMER. ANAL., 2014.
-
(2014)
IMA J. Numer. Anal.
-
-
Kopec, M.1
|