메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 2278-2286

On the convergence of stochastic gradient MCMC algorithms with high-order integrators

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; INFORMATION SCIENCE; MEAN SQUARE ERROR;

EID: 84965095225     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (197)

References (24)
  • 1
    • 84919787787 scopus 로고    scopus 로고
    • Stochastic gradient Hamiltonian Monte Carlo
    • T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In ICML, 2014.
    • (2014) ICML
    • Chen, T.1    Fox, E.B.2    Guestrin, C.3
  • 4
    • 80053452150 scopus 로고    scopus 로고
    • Bayesian learning via stochastic gradient Langevin dynamics
    • M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.
    • (2011) ICML
    • Welling, M.1    Teh, Y.W.2
  • 7
    • 84969498066 scopus 로고    scopus 로고
    • The fundamental incompatibility of Hamiltonian Monte Carlo and data subsampling
    • M. Betancourt. The fundamental incompatibility of Hamiltonian Monte Carlo and data subsampling. In ICML, 2015.
    • (2015) ICML
    • Betancourt, M.1
  • 8
    • 84919935741 scopus 로고    scopus 로고
    • Approximation analysis of stochastic gradient Langevin dynamics by using Fokker-Planck equation and Itõ process
    • I. Sato and H. Nakagawa. Approximation analysis of stochastic gradient Langevin dynamics by using Fokker-Planck equation and Itõ process. In ICML, 2014.
    • (2014) ICML
    • Sato, I.1    Nakagawa, H.2
  • 10
    • 84923955649 scopus 로고    scopus 로고
    • Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics
    • A. Abdulle, G. Vilmart, and K. C. Zygalakis. Long time accuracy of Lie-Trotter splitting methods for Langevin dynamics. SIAM J. NUMER. ANAL., 53(1):1-16, 2015.
    • (2015) SIAM J. NUMER. ANAL. , vol.53 , Issue.1 , pp. 1-16
    • Abdulle, A.1    Vilmart, G.2    Zygalakis, K.C.3
  • 12
    • 77950857322 scopus 로고    scopus 로고
    • Construction of numerical time-average and stationary measures via Poisson equations
    • J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov. Construction of numerical time-average and stationary measures via Poisson equations. SIAM J. NUMER. ANAL., 48(2):552-577, 2010.
    • (2010) SIAM J. NUMER. ANAL. , vol.48 , Issue.2 , pp. 552-577
    • Mattingly, J.C.1    Stuart, A.M.2    Tretyakov, M.V.3
  • 14
    • 0002651817 scopus 로고
    • La theorie generalie de la mesure dans son application a l'etude de systemes dynamiques de la mecanique non-lineaire
    • N. N. Bogoliubov and N. M. Krylov. La theorie generalie de la mesure dans son application a l'etude de systemes dynamiques de la mecanique non-lineaire. Ann. Math. II (in French), 38(1):65-113, 1937.
    • (1937) Ann. Math. II (in French) , vol.38 , Issue.1 , pp. 65-113
    • Bogoliubov, N.N.1    Krylov, N.M.2
  • 15
    • 84874883342 scopus 로고    scopus 로고
    • Rational construction of stochastic numerical methods for molecular sampling
    • B. Leimkuhler and C. Matthews. Rational construction of stochastic numerical methods for molecular sampling. AMRX, 2013(1):34-56, 2013.
    • (2013) AMRX , vol.2013 , Issue.1 , pp. 34-56
    • Leimkuhler, B.1    Matthews, C.2
  • 17
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent Dirichlet allocation
    • M. D. Hoffman, D. M. Blei, and F. Bach. Online learning for latent Dirichlet allocation. In NIPS, 2010.
    • (2010) NIPS
    • Hoffman, M.D.1    Blei, D.M.2    Bach, F.3
  • 18
    • 84970024465 scopus 로고    scopus 로고
    • Scalable deep Poisson factor analysis for topic modeling
    • Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep Poisson factor analysis for topic modeling. In ICML, 2015.
    • (2015) ICML
    • Gan, Z.1    Chen, C.2    Henao, R.3    Carlson, D.4    Carin, L.5
  • 19
    • 84898939739 scopus 로고    scopus 로고
    • Stochastic gradient Riemannian Langevin dynamics on the probability simplex
    • S. Patterson and Y. W. Teh. Stochastic gradient Riemannian Langevin dynamics on the probability simplex. In NIPS, 2013.
    • (2013) NIPS
    • Patterson, S.1    Teh, Y.W.2
  • 20
    • 84965104862 scopus 로고    scopus 로고
    • Learning deep sigmoid belief networks with data augmentation
    • Z. Gan, R. Henao, D. Carlson, and L. Carin. Learning deep sigmoid belief networks with data augmentation. In AISTATS, 2015.
    • (2015) AISTATS
    • Gan, Z.1    Henao, R.2    Carlson, D.3    Carin, L.4
  • 21
    • 56449102578 scopus 로고    scopus 로고
    • On the quantitative analysis of deep belief networks
    • R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In ICML, 2008.
    • (2008) ICML
    • Salakhutdinov, R.1    Murray, I.2
  • 22
    • 84919786239 scopus 로고    scopus 로고
    • Neural variational inference and learning in belief networks
    • A. Mnih and K. Gregor. Neural variational inference and learning in belief networks. In ICML, 2014.
    • (2014) ICML
    • Mnih, A.1    Gregor, K.2
  • 23
    • 84865579671 scopus 로고    scopus 로고
    • Weak backward error analysis for SDEs
    • A. Debussche and E. Faou. Weak backward error analysis for SDEs. SIAM J. NUMER. ANAL., 50(3):1734-1752, 2012.
    • (2012) SIAM J. NUMER. ANAL. , vol.50 , Issue.3 , pp. 1734-1752
    • Debussche, A.1    Faou, E.2
  • 24
    • 84907019784 scopus 로고    scopus 로고
    • Weak backward error analysis for overdamped Langevin processes
    • M. Kopec. Weak backward error analysis for overdamped Langevin processes. IMA J. NUMER. ANAL., 2014.
    • (2014) IMA J. Numer. Anal.
    • Kopec, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.