-
1
-
-
84998970726
-
Stochastic spectral descent for restricted Boltzmann machines
-
D. Carlson, V. Cevher, and L. Carin. Stochastic Spectral Descent for Restricted Boltzmann Machines. AISTATS, 2015.
-
(2015)
AISTATS
-
-
Carlson, D.1
Cevher, V.2
Carin, L.3
-
2
-
-
84962815645
-
Stochastic spectral descent for discrete graphical models
-
D. Carlson, Y.-P. Hsieh, E. Collins, L. Carin, and V. Cevher. Stochastic Spectral Descent for Discrete Graphical Models. IEEE J. Special Topics in Signal Processing, 2016.
-
(2016)
IEEE J. Special Topics in Signal Processing
-
-
Carlson, D.1
Hsieh, Y.-P.2
Collins, E.3
Carin, L.4
Cevher, V.5
-
3
-
-
84877799221
-
Enhanced gradient for training restricted Boltzmann machines
-
K. Cho, T. Raiko, and A. Ilin. Enhanced Gradient for Training Restricted Boltzmann Machines. Neural Computation, 2013.
-
(2013)
Neural Computation
-
-
Cho, K.1
Raiko, T.2
Ilin, A.3
-
6
-
-
84928534967
-
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
-
Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS, 2014.
-
(2014)
NIPS
-
-
Dauphin, Y.N.1
Pascanu, R.2
Gulcehre, C.3
Cho, K.4
Ganguli, S.5
Bengio, Y.6
-
7
-
-
78649435995
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 2010.
-
(2010)
JMLR
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
8
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why Does Unsupervised Pre-training Help Deep Learning? JMLR 2010.
-
(2010)
JMLR
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
9
-
-
79960425522
-
Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P. G. Martinsson, and J. A. Tropp. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review 2011.
-
(2011)
SIAM Review
-
-
Halko, N.1
Martinsson, P.G.2
Tropp, J.A.3
-
12
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 2002.
-
(2002)
Neural Computation
-
-
Hinton, G.1
-
14
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Hinton, G.E.2
-
17
-
-
84965172246
-
Inductive principles for restricted Boltzmann machine learning
-
B. Marlin and K. Swersky. Inductive principles for restricted Boltzmann machine learning. ICML, 2010.
-
(2010)
ICML
-
-
Marlin, B.1
Swersky, K.2
-
19
-
-
84883162681
-
Parallelizable sampling of Markov Random fields
-
J. Martens and I. Sutskever. Parallelizable Sampling of Markov Random Fields. AISTATS, 2010.
-
(2010)
AISTATS
-
-
Martens, J.1
Sutskever, I.2
-
20
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.E.2
-
24
-
-
56449102578
-
On the quantitative analysis of deep belief networks
-
R. Salakhutdinov and I. Murray. On the Quantitative Analysis of Deep Belief Networks. ICML, 2008.
-
(2008)
ICML
-
-
Salakhutdinov, R.1
Murray, I.2
-
27
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. In NIPS, 2012.
-
(2012)
NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.P.3
-
28
-
-
71149084943
-
Using fast weights to improve persistent contrastive divergence
-
T. Tieleman and G. Hinton. Using fast weights to improve persistent contrastive divergence. ICML, 2009.
-
(2009)
ICML
-
-
Tieleman, T.1
Hinton, G.2
-
29
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of neural networks using dropconnect. In ICML, 2013.
-
(2013)
ICML
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Cun, Y.L.4
Fergus, R.5
|