메뉴 건너뛰기




Volumn 9, Issue 12, 2016, Pages

Hybrid short term wind speed forecasting using variational mode decomposition and a weighted regularized extreme learning machine

Author keywords

Partial autocorrelation function; Variational mode decomposition; Weighted regular extreme learning machine; Wind speed forecasting

Indexed keywords

AUTOCORRELATION; FORECASTING; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS; SPEED; WIND POWER;

EID: 85002800993     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en9120989     Document Type: Article
Times cited : (34)

References (39)
  • 1
    • 84944909341 scopus 로고    scopus 로고
    • Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
    • Men, Z.X.; Yee, E.; Lien, F.S.; Wen, D.Y.; Chen, Y.S. Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203-211.
    • (2016) Renew. Energy , vol.87 , pp. 203-211
    • Men, Z.X.1    Yee, E.2    Lien, F.S.3    Wen, D.Y.4    Chen, Y.S.5
  • 2
    • 67650089726 scopus 로고    scopus 로고
    • Creating the dataset for the western wind and solar integration study (U.S.A.)
    • Potter, C.W.; Lew, D.; McCaa, J.; Cheng, S.; Eichelberger, S.; Grimit, E. Creating the dataset for the western wind and solar integration study (U.S.A.). Wind Eng. 2008, 32, 325-338.
    • (2008) Wind Eng. , vol.32 , pp. 325-338
    • Potter, C.W.1    Lew, D.2    McCaa, J.3    Cheng, S.4    Eichelberger, S.5    Grimit, E.6
  • 3
    • 84961923940 scopus 로고    scopus 로고
    • Research and application based on adaptive boosting strategy and modified CGFPA algorithm: A case study for wind speed forecasting
    • Heng, J.N.; Wang, C.; Zhao, X.J.; Xiao, L.Y. Research and application based on adaptive boosting strategy and modified CGFPA algorithm: A case study for wind speed forecasting. Sustainability 2016, 8, 235.
    • (2016) Sustainability , vol.8 , pp. 235
    • Heng, J.N.1    Wang, C.2    Zhao, X.J.3    Xiao, L.Y.4
  • 4
    • 84958110177 scopus 로고    scopus 로고
    • Short-term wind speed or power forecasting with heteroscedastic support vector regression
    • Hu, Q.; Zhang, S.; Yu, M.; Xie, Z. Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustain. Energy 2016, 7, 241-249.
    • (2016) IEEE Trans. Sustain. Energy , vol.7 , pp. 241-249
    • Hu, Q.1    Zhang, S.2    Yu, M.3    Xie, Z.4
  • 5
    • 84959329983 scopus 로고    scopus 로고
    • Wind speed prediction using a univariate ARIMA model and a multivariate NARX model
    • Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Heard, C. Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies 2016, 9, 109.
    • (2016) Energies , vol.9 , pp. 109
    • Cadenas, E.1    Rivera, W.2    Campos-Amezcua, R.3    Heard, C.4
  • 6
    • 84959301543 scopus 로고    scopus 로고
    • Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
    • Noorollahi, Y.; Jokar, M.A.; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers. Manag. 2016, 115, 17-25.
    • (2016) Energy Convers. Manag. , vol.115 , pp. 17-25
    • Noorollahi, Y.1    Jokar, M.A.2    Kalhor, A.3
  • 7
    • 84957886411 scopus 로고    scopus 로고
    • Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data
    • Doucoure, B.; Agbossou, K.; Cardenas, A. Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renew. Energy 2016, 92, 202-211.
    • (2016) Renew. Energy , vol.92 , pp. 202-211
    • Doucoure, B.1    Agbossou, K.2    Cardenas, A.3
  • 8
    • 84946594359 scopus 로고    scopus 로고
    • An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
    • Zhao, J.; Guo, Z.H.; Su, Z.Y.; Zhao, Z.Y.; Xiao, X.; Liu, F. An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl. Energy 2016, 162, 808-826.
    • (2016) Appl. Energy , vol.162 , pp. 808-826
    • Zhao, J.1    Guo, Z.H.2    Su, Z.Y.3    Zhao, Z.Y.4    Xiao, X.5    Liu, F.6
  • 9
    • 0036779031 scopus 로고    scopus 로고
    • A novel approach for the forecasting of mean hourly wind speed time series
    • Sfetsos, A. A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy 2002, 27, 163-174.
    • (2002) Renew. Energy , vol.27 , pp. 163-174
    • Sfetsos, A.1
  • 10
    • 84937909008 scopus 로고    scopus 로고
    • Wind speed forecasting for wind farms: A method based on support vector regression
    • Santamaría-Bonfil, G.; Reyes-Ballesteros, A.; Gershenson, C. Wind speed forecasting for wind farms: A method based on support vector regression. Renew. Energy 2016, 85, 790-809.
    • (2016) Renew. Energy , vol.85 , pp. 790-809
    • Santamaría-Bonfil, G.1    Reyes-Ballesteros, A.2    Gershenson, C.3
  • 11
    • 84959359752 scopus 로고    scopus 로고
    • Hybrid forecasting model-based data mining and genetic algorithm-adaptive particle swarm optimisation: A case study of wind speed time series
    • Wang, J.Z.; Zhang, F.Y.; Liu, F.; Ma, J.J. Hybrid forecasting model-based data mining and genetic algorithm-adaptive particle swarm optimisation: A case study of wind speed time series. IET Renew. Power Gener. 2016, 10, 287-298.
    • (2016) IET Renew. Power Gener. , vol.10 , pp. 287-298
    • Wang, J.Z.1    Zhang, F.Y.2    Liu, F.3    Ma, J.J.4
  • 12
    • 84954424030 scopus 로고    scopus 로고
    • Linear and non-linear autoregressive models for short-term wind speed forecasting
    • Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers. Manag. 2016, 112, 115-124.
    • (2016) Energy Convers. Manag. , vol.112 , pp. 115-124
    • Lydia, M.1    Kumar, S.S.2    Selvakumar, A.I.3    Kumar, G.E.P.4
  • 13
    • 84934887601 scopus 로고    scopus 로고
    • Transfer learning for short-term wind speed prediction with deep neural networks
    • Hu, Q.H.; Zhang, R.J.; Zhou, Y.C. Transfer learning for short-term wind speed prediction with deep neural networks. Renew. Energy 2016, 85, 83-95.
    • (2016) Renew. Energy , vol.85 , pp. 83-95
    • Hu, Q.H.1    Zhang, R.J.2    Zhou, Y.C.3
  • 14
    • 84859070373 scopus 로고    scopus 로고
    • Application of auto-regressive models to U.K. Wind speed data for power system impact studies
    • Hill, D.C.; McMillan, D.; Bell, K.R.W.; Infield, D. Application of auto-regressive models to U.K. wind speed data for power system impact studies. IEEE Trans. Sustain. Energy 2012, 3, 134-141.
    • (2012) IEEE Trans. Sustain. Energy , vol.3 , pp. 134-141
    • Hill, D.C.1    McMillan, D.2    Bell, K.R.W.3    Infield, D.4
  • 15
    • 78149358777 scopus 로고    scopus 로고
    • Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
    • Liu, H.; Erdem, E.; Shi, J. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl. Energy 2011, 88, 724-732.
    • (2011) Appl. Energy , vol.88 , pp. 724-732
    • Liu, H.1    Erdem, E.2    Shi, J.3
  • 16
    • 84864827118 scopus 로고    scopus 로고
    • Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output
    • Cassola, F.; Burlando, M. Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output. Appl. Energy 2012, 99, 154-166.
    • (2012) Appl. Energy , vol.99 , pp. 154-166
    • Cassola, F.1    Burlando, M.2
  • 17
    • 33847369874 scopus 로고    scopus 로고
    • A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
    • Barbounis, T.G.; Theocharis, J.B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70, 1525-1542.
    • (2007) Neurocomputing , vol.70 , pp. 1525-1542
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 18
    • 84940704970 scopus 로고    scopus 로고
    • A multiobjective framework for wind speed prediction interval forecasts
    • Shrivastava, N.A.; Lohia, K.; Panigrahi, B.K. A multiobjective framework for wind speed prediction interval forecasts. Renew. Energy 2016, 87, 903-910.
    • (2016) Renew. Energy , vol.87 , pp. 903-910
    • Shrivastava, N.A.1    Lohia, K.2    Panigrahi, B.K.3
  • 19
    • 84929711432 scopus 로고    scopus 로고
    • What are extreme learning machines? Filling the gap between Frank Rosenblatt's dream and John von Neumann's puzzle
    • Huang, G.-B. What are extreme learning machines? Filling the gap between Frank Rosenblatt's dream and John von Neumann's puzzle. Cogn. Comput. 2015, 7, 263-278.
    • (2015) Cogn. Comput. , vol.7 , pp. 263-278
    • Huang, G.-B.1
  • 20
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 21
    • 84921916753 scopus 로고    scopus 로고
    • A self-adaptive hybrid approach for wind speed forecasting
    • Wang, J.Z.; Hu, J.M.; Ma, K.L.; Zhang, Y.X. A self-adaptive hybrid approach for wind speed forecasting. Renew. Energy 2015, 78, 374-385.
    • (2015) Renew. Energy , vol.78 , pp. 374-385
    • Wang, J.Z.1    Hu, J.M.2    Ma, K.L.3    Zhang, Y.X.4
  • 22
    • 84929146225 scopus 로고    scopus 로고
    • Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
    • Liu, H.; Tian, H.Q.; Li, Y.F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers. Manag. 2015, 100, 16-22.
    • (2015) Energy Convers. Manag. , vol.100 , pp. 16-22
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 23
    • 84868626655 scopus 로고    scopus 로고
    • Weighted extreme learning machine for imbalance learning
    • Zong, W.W.; Huang, G.B.; Chen, Y.Q. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229-242.
    • (2013) Neurocomputing , vol.101 , pp. 229-242
    • Zong, W.W.1    Huang, G.B.2    Chen, Y.Q.3
  • 24
    • 84918773829 scopus 로고    scopus 로고
    • Outlier-robust extreme learning machine for regression problems
    • Zhang, K.; Luo, M. Outlier-robust extreme learning machine for regression problems. Neurocomputing 2015, 151, 1519-1527.
    • (2015) Neurocomputing , vol.151 , pp. 1519-1527
    • Zhang, K.1    Luo, M.2
  • 25
    • 84958759376 scopus 로고    scopus 로고
    • Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China
    • Sun, W.; Liu, M.H. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers. Manag. 2016, 114, 197-208.
    • (2016) Energy Convers. Manag. , vol.114 , pp. 197-208
    • Sun, W.1    Liu, M.H.2
  • 28
    • 84958154004 scopus 로고    scopus 로고
    • Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
    • Meng, A.B.; Ge, J.F.; Yin, H.; Chen, S.Z. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers. Manag. 2016, 114, 75-88.
    • (2016) Energy Convers. Manag. , vol.114 , pp. 75-88
    • Meng, A.B.1    Ge, J.F.2    Yin, H.3    Chen, S.Z.4
  • 29
    • 84955512570 scopus 로고    scopus 로고
    • A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction
    • Fei, S.W. A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction. Int. J. Electr. Power Energy Syst. 2016, 78, 910-915.
    • (2016) Int. J. Electr. Power Energy Syst. , vol.78 , pp. 910-915
    • Fei, S.W.1
  • 30
    • 84962148959 scopus 로고    scopus 로고
    • Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
    • Wang, S.X.; Zhang, N.; Wu, L.; Wang, Y.M. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629-636.
    • (2016) Renew. Energy , vol.94 , pp. 629-636
    • Wang, S.X.1    Zhang, N.2    Wu, L.3    Wang, Y.M.4
  • 31
    • 84954505166 scopus 로고    scopus 로고
    • Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression
    • Hu, J.M.; Wang, J.Z. Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression. Energy 2015, 93, 1456-1466.
    • (2015) Energy , vol.93 , pp. 1456-1466
    • Hu, J.M.1    Wang, J.Z.2
  • 32
    • 84924768945 scopus 로고    scopus 로고
    • A hybrid technique for short-term wind speed prediction
    • Hu, J.M.; Wang, J.Z.; Ma, K.L. A hybrid technique for short-term wind speed prediction. Energy 2015, 81, 563-574.
    • (2015) Energy , vol.81 , pp. 563-574
    • Hu, J.M.1    Wang, J.Z.2    Ma, K.L.3
  • 34
    • 84954156935 scopus 로고    scopus 로고
    • Intraday stock price forecasting based on variational mode decomposition
    • Lahmiri, S. Intraday stock price forecasting based on variational mode decomposition. J. Comput. Sci. 2016, 12, 23-27.
    • (2016) J. Comput. Sci. , vol.12 , pp. 23-27
    • Lahmiri, S.1
  • 35
    • 84956597498 scopus 로고    scopus 로고
    • A carbon price forecasting model based on variational mode decomposition and spiking neural networks
    • Sun, G.Q.; Chen, T.; Wei, Z.N.; Sun, Y.H.; Zang, H.X.; Chen, S. A carbon price forecasting model based on variational mode decomposition and spiking neural networks. Energies 2016, 9, 54.
    • (2016) Energies , vol.9 , pp. 54
    • Sun, G.Q.1    Chen, T.2    Wei, Z.N.3    Sun, Y.H.4    Zang, H.X.5    Chen, S.6
  • 36
    • 84946569715 scopus 로고    scopus 로고
    • Filter bank property of variational mode decomposition and its applications
    • Wang, Y.X.; Markert, R. Filter bank property of variational mode decomposition and its applications. Signal Process. 2016, 120, 509-521.
    • (2016) Signal Process , vol.120 , pp. 509-521
    • Wang, Y.X.1    Markert, R.2
  • 37
    • 84955259754 scopus 로고    scopus 로고
    • Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods
    • Zhang, Y.C.; Liu, K.P.; Qin, L.; An, X.L. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Convers. Manag. 2016, 112, 208-219.
    • (2016) Energy Convers. Manag. , vol.112 , pp. 208-219
    • Zhang, Y.C.1    Liu, K.P.2    Qin, L.3    An, X.L.4
  • 38
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo, Z.H.; Zhao, W.G.; Lu, H.Y.; Wang, J.Z. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37, 241-249.
    • (2012) Renew. Energy , vol.37 , pp. 241-249
    • Guo, Z.H.1    Zhao, W.G.2    Lu, H.Y.3    Wang, J.Z.4
  • 39
    • 84901427227 scopus 로고    scopus 로고
    • Noise model based v-support vector regression with its application to short-term wind speed forecasting
    • Hu, Q.H.; Zhang, S.G.; Xie, Z.X.; Mi, J.S.; Wan, J. Noise model based v-support vector regression with its application to short-term wind speed forecasting. Neural Netw. 2014, 57, 1-11.
    • (2014) Neural Netw. , vol.57 , pp. 1-11
    • Hu, Q.H.1    Zhang, S.G.2    Xie, Z.X.3    Mi, J.S.4    Wan, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.