-
1
-
-
84944909341
-
Short-term wind speed and power forecasting using an ensemble of mixture density neural networks
-
Men, Z.X.; Yee, E.; Lien, F.S.; Wen, D.Y.; Chen, Y.S. Short-term wind speed and power forecasting using an ensemble of mixture density neural networks. Renew. Energy 2016, 87, 203-211.
-
(2016)
Renew. Energy
, vol.87
, pp. 203-211
-
-
Men, Z.X.1
Yee, E.2
Lien, F.S.3
Wen, D.Y.4
Chen, Y.S.5
-
2
-
-
67650089726
-
Creating the dataset for the western wind and solar integration study (U.S.A.)
-
Potter, C.W.; Lew, D.; McCaa, J.; Cheng, S.; Eichelberger, S.; Grimit, E. Creating the dataset for the western wind and solar integration study (U.S.A.). Wind Eng. 2008, 32, 325-338.
-
(2008)
Wind Eng.
, vol.32
, pp. 325-338
-
-
Potter, C.W.1
Lew, D.2
McCaa, J.3
Cheng, S.4
Eichelberger, S.5
Grimit, E.6
-
3
-
-
84961923940
-
Research and application based on adaptive boosting strategy and modified CGFPA algorithm: A case study for wind speed forecasting
-
Heng, J.N.; Wang, C.; Zhao, X.J.; Xiao, L.Y. Research and application based on adaptive boosting strategy and modified CGFPA algorithm: A case study for wind speed forecasting. Sustainability 2016, 8, 235.
-
(2016)
Sustainability
, vol.8
, pp. 235
-
-
Heng, J.N.1
Wang, C.2
Zhao, X.J.3
Xiao, L.Y.4
-
4
-
-
84958110177
-
Short-term wind speed or power forecasting with heteroscedastic support vector regression
-
Hu, Q.; Zhang, S.; Yu, M.; Xie, Z. Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustain. Energy 2016, 7, 241-249.
-
(2016)
IEEE Trans. Sustain. Energy
, vol.7
, pp. 241-249
-
-
Hu, Q.1
Zhang, S.2
Yu, M.3
Xie, Z.4
-
5
-
-
84959329983
-
Wind speed prediction using a univariate ARIMA model and a multivariate NARX model
-
Cadenas, E.; Rivera, W.; Campos-Amezcua, R.; Heard, C. Wind speed prediction using a univariate ARIMA model and a multivariate NARX model. Energies 2016, 9, 109.
-
(2016)
Energies
, vol.9
, pp. 109
-
-
Cadenas, E.1
Rivera, W.2
Campos-Amezcua, R.3
Heard, C.4
-
6
-
-
84959301543
-
Using artificial neural networks for temporal and spatial wind speed forecasting in Iran
-
Noorollahi, Y.; Jokar, M.A.; Kalhor, A. Using artificial neural networks for temporal and spatial wind speed forecasting in Iran. Energy Convers. Manag. 2016, 115, 17-25.
-
(2016)
Energy Convers. Manag.
, vol.115
, pp. 17-25
-
-
Noorollahi, Y.1
Jokar, M.A.2
Kalhor, A.3
-
7
-
-
84957886411
-
Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data
-
Doucoure, B.; Agbossou, K.; Cardenas, A. Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data. Renew. Energy 2016, 92, 202-211.
-
(2016)
Renew. Energy
, vol.92
, pp. 202-211
-
-
Doucoure, B.1
Agbossou, K.2
Cardenas, A.3
-
8
-
-
84946594359
-
An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
-
Zhao, J.; Guo, Z.H.; Su, Z.Y.; Zhao, Z.Y.; Xiao, X.; Liu, F. An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed. Appl. Energy 2016, 162, 808-826.
-
(2016)
Appl. Energy
, vol.162
, pp. 808-826
-
-
Zhao, J.1
Guo, Z.H.2
Su, Z.Y.3
Zhao, Z.Y.4
Xiao, X.5
Liu, F.6
-
9
-
-
0036779031
-
A novel approach for the forecasting of mean hourly wind speed time series
-
Sfetsos, A. A novel approach for the forecasting of mean hourly wind speed time series. Renew. Energy 2002, 27, 163-174.
-
(2002)
Renew. Energy
, vol.27
, pp. 163-174
-
-
Sfetsos, A.1
-
10
-
-
84937909008
-
Wind speed forecasting for wind farms: A method based on support vector regression
-
Santamaría-Bonfil, G.; Reyes-Ballesteros, A.; Gershenson, C. Wind speed forecasting for wind farms: A method based on support vector regression. Renew. Energy 2016, 85, 790-809.
-
(2016)
Renew. Energy
, vol.85
, pp. 790-809
-
-
Santamaría-Bonfil, G.1
Reyes-Ballesteros, A.2
Gershenson, C.3
-
11
-
-
84959359752
-
Hybrid forecasting model-based data mining and genetic algorithm-adaptive particle swarm optimisation: A case study of wind speed time series
-
Wang, J.Z.; Zhang, F.Y.; Liu, F.; Ma, J.J. Hybrid forecasting model-based data mining and genetic algorithm-adaptive particle swarm optimisation: A case study of wind speed time series. IET Renew. Power Gener. 2016, 10, 287-298.
-
(2016)
IET Renew. Power Gener.
, vol.10
, pp. 287-298
-
-
Wang, J.Z.1
Zhang, F.Y.2
Liu, F.3
Ma, J.J.4
-
12
-
-
84954424030
-
Linear and non-linear autoregressive models for short-term wind speed forecasting
-
Lydia, M.; Kumar, S.S.; Selvakumar, A.I.; Kumar, G.E.P. Linear and non-linear autoregressive models for short-term wind speed forecasting. Energy Convers. Manag. 2016, 112, 115-124.
-
(2016)
Energy Convers. Manag.
, vol.112
, pp. 115-124
-
-
Lydia, M.1
Kumar, S.S.2
Selvakumar, A.I.3
Kumar, G.E.P.4
-
13
-
-
84934887601
-
Transfer learning for short-term wind speed prediction with deep neural networks
-
Hu, Q.H.; Zhang, R.J.; Zhou, Y.C. Transfer learning for short-term wind speed prediction with deep neural networks. Renew. Energy 2016, 85, 83-95.
-
(2016)
Renew. Energy
, vol.85
, pp. 83-95
-
-
Hu, Q.H.1
Zhang, R.J.2
Zhou, Y.C.3
-
14
-
-
84859070373
-
Application of auto-regressive models to U.K. Wind speed data for power system impact studies
-
Hill, D.C.; McMillan, D.; Bell, K.R.W.; Infield, D. Application of auto-regressive models to U.K. wind speed data for power system impact studies. IEEE Trans. Sustain. Energy 2012, 3, 134-141.
-
(2012)
IEEE Trans. Sustain. Energy
, vol.3
, pp. 134-141
-
-
Hill, D.C.1
McMillan, D.2
Bell, K.R.W.3
Infield, D.4
-
15
-
-
78149358777
-
Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed
-
Liu, H.; Erdem, E.; Shi, J. Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed. Appl. Energy 2011, 88, 724-732.
-
(2011)
Appl. Energy
, vol.88
, pp. 724-732
-
-
Liu, H.1
Erdem, E.2
Shi, J.3
-
16
-
-
84864827118
-
Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output
-
Cassola, F.; Burlando, M. Wind speed and wind energy forecast through kalman filtering of numerical weather prediction model output. Appl. Energy 2012, 99, 154-166.
-
(2012)
Appl. Energy
, vol.99
, pp. 154-166
-
-
Cassola, F.1
Burlando, M.2
-
17
-
-
33847369874
-
A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation
-
Barbounis, T.G.; Theocharis, J.B. A locally recurrent fuzzy neural network with application to the wind speed prediction using spatial correlation. Neurocomputing 2007, 70, 1525-1542.
-
(2007)
Neurocomputing
, vol.70
, pp. 1525-1542
-
-
Barbounis, T.G.1
Theocharis, J.B.2
-
18
-
-
84940704970
-
A multiobjective framework for wind speed prediction interval forecasts
-
Shrivastava, N.A.; Lohia, K.; Panigrahi, B.K. A multiobjective framework for wind speed prediction interval forecasts. Renew. Energy 2016, 87, 903-910.
-
(2016)
Renew. Energy
, vol.87
, pp. 903-910
-
-
Shrivastava, N.A.1
Lohia, K.2
Panigrahi, B.K.3
-
19
-
-
84929711432
-
What are extreme learning machines? Filling the gap between Frank Rosenblatt's dream and John von Neumann's puzzle
-
Huang, G.-B. What are extreme learning machines? Filling the gap between Frank Rosenblatt's dream and John von Neumann's puzzle. Cogn. Comput. 2015, 7, 263-278.
-
(2015)
Cogn. Comput.
, vol.7
, pp. 263-278
-
-
Huang, G.-B.1
-
20
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
21
-
-
84921916753
-
A self-adaptive hybrid approach for wind speed forecasting
-
Wang, J.Z.; Hu, J.M.; Ma, K.L.; Zhang, Y.X. A self-adaptive hybrid approach for wind speed forecasting. Renew. Energy 2015, 78, 374-385.
-
(2015)
Renew. Energy
, vol.78
, pp. 374-385
-
-
Wang, J.Z.1
Hu, J.M.2
Ma, K.L.3
Zhang, Y.X.4
-
22
-
-
84929146225
-
Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms
-
Liu, H.; Tian, H.Q.; Li, Y.F. Four wind speed multi-step forecasting models using extreme learning machines and signal decomposing algorithms. Energy Convers. Manag. 2015, 100, 16-22.
-
(2015)
Energy Convers. Manag.
, vol.100
, pp. 16-22
-
-
Liu, H.1
Tian, H.Q.2
Li, Y.F.3
-
23
-
-
84868626655
-
Weighted extreme learning machine for imbalance learning
-
Zong, W.W.; Huang, G.B.; Chen, Y.Q. Weighted extreme learning machine for imbalance learning. Neurocomputing 2013, 101, 229-242.
-
(2013)
Neurocomputing
, vol.101
, pp. 229-242
-
-
Zong, W.W.1
Huang, G.B.2
Chen, Y.Q.3
-
24
-
-
84918773829
-
Outlier-robust extreme learning machine for regression problems
-
Zhang, K.; Luo, M. Outlier-robust extreme learning machine for regression problems. Neurocomputing 2015, 151, 1519-1527.
-
(2015)
Neurocomputing
, vol.151
, pp. 1519-1527
-
-
Zhang, K.1
Luo, M.2
-
25
-
-
84958759376
-
Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China
-
Sun, W.; Liu, M.H. Wind speed forecasting using FEEMD echo state networks with RELM in Hebei, China. Energy Convers. Manag. 2016, 114, 197-208.
-
(2016)
Energy Convers. Manag.
, vol.114
, pp. 197-208
-
-
Sun, W.1
Liu, M.H.2
-
26
-
-
67650463106
-
Regularized extreme learning machine
-
Deng, W.; Zheng, Q.; Chen, L. Regularized extreme learning machine. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March-2 April 2009; pp. 389-395.
-
Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March-2 April 2009
, pp. 389-395
-
-
Deng, W.1
Zheng, Q.2
Chen, L.3
-
27
-
-
84865706274
-
Regularized extreme learning machine for regression problems
-
Martínez-Martínez, J.M.; Escandell-Montero, P.; Soria-Olivas, E.; Martín-Guerrero, J.D.; Magdalena-Benedito, R.; Gómez-Sanchis, J. Regularized extreme learning machine for regression problems. Neurocomputing 2011, 74, 3716-3721.
-
(2011)
Neurocomputing
, vol.74
, pp. 3716-3721
-
-
Martínez-Martínez, J.M.1
Escandell-Montero, P.2
Soria-Olivas, E.3
Martín-Guerrero, J.D.4
Magdalena-Benedito, R.5
Gómez-Sanchis, J.6
-
28
-
-
84958154004
-
Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm
-
Meng, A.B.; Ge, J.F.; Yin, H.; Chen, S.Z. Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm. Energy Convers. Manag. 2016, 114, 75-88.
-
(2016)
Energy Convers. Manag.
, vol.114
, pp. 75-88
-
-
Meng, A.B.1
Ge, J.F.2
Yin, H.3
Chen, S.Z.4
-
29
-
-
84955512570
-
A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction
-
Fei, S.W. A hybrid model of EMD and multiple-kernel RVR algorithm for wind speed prediction. Int. J. Electr. Power Energy Syst. 2016, 78, 910-915.
-
(2016)
Int. J. Electr. Power Energy Syst.
, vol.78
, pp. 910-915
-
-
Fei, S.W.1
-
30
-
-
84962148959
-
Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method
-
Wang, S.X.; Zhang, N.; Wu, L.; Wang, Y.M. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629-636.
-
(2016)
Renew. Energy
, vol.94
, pp. 629-636
-
-
Wang, S.X.1
Zhang, N.2
Wu, L.3
Wang, Y.M.4
-
31
-
-
84954505166
-
Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression
-
Hu, J.M.; Wang, J.Z. Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression. Energy 2015, 93, 1456-1466.
-
(2015)
Energy
, vol.93
, pp. 1456-1466
-
-
Hu, J.M.1
Wang, J.Z.2
-
32
-
-
84924768945
-
A hybrid technique for short-term wind speed prediction
-
Hu, J.M.; Wang, J.Z.; Ma, K.L. A hybrid technique for short-term wind speed prediction. Energy 2015, 81, 563-574.
-
(2015)
Energy
, vol.81
, pp. 563-574
-
-
Hu, J.M.1
Wang, J.Z.2
Ma, K.L.3
-
34
-
-
84954156935
-
Intraday stock price forecasting based on variational mode decomposition
-
Lahmiri, S. Intraday stock price forecasting based on variational mode decomposition. J. Comput. Sci. 2016, 12, 23-27.
-
(2016)
J. Comput. Sci.
, vol.12
, pp. 23-27
-
-
Lahmiri, S.1
-
35
-
-
84956597498
-
A carbon price forecasting model based on variational mode decomposition and spiking neural networks
-
Sun, G.Q.; Chen, T.; Wei, Z.N.; Sun, Y.H.; Zang, H.X.; Chen, S. A carbon price forecasting model based on variational mode decomposition and spiking neural networks. Energies 2016, 9, 54.
-
(2016)
Energies
, vol.9
, pp. 54
-
-
Sun, G.Q.1
Chen, T.2
Wei, Z.N.3
Sun, Y.H.4
Zang, H.X.5
Chen, S.6
-
36
-
-
84946569715
-
Filter bank property of variational mode decomposition and its applications
-
Wang, Y.X.; Markert, R. Filter bank property of variational mode decomposition and its applications. Signal Process. 2016, 120, 509-521.
-
(2016)
Signal Process
, vol.120
, pp. 509-521
-
-
Wang, Y.X.1
Markert, R.2
-
37
-
-
84955259754
-
Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods
-
Zhang, Y.C.; Liu, K.P.; Qin, L.; An, X.L. Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods. Energy Convers. Manag. 2016, 112, 208-219.
-
(2016)
Energy Convers. Manag.
, vol.112
, pp. 208-219
-
-
Zhang, Y.C.1
Liu, K.P.2
Qin, L.3
An, X.L.4
-
38
-
-
79961127156
-
Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
-
Guo, Z.H.; Zhao, W.G.; Lu, H.Y.; Wang, J.Z. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37, 241-249.
-
(2012)
Renew. Energy
, vol.37
, pp. 241-249
-
-
Guo, Z.H.1
Zhao, W.G.2
Lu, H.Y.3
Wang, J.Z.4
-
39
-
-
84901427227
-
Noise model based v-support vector regression with its application to short-term wind speed forecasting
-
Hu, Q.H.; Zhang, S.G.; Xie, Z.X.; Mi, J.S.; Wan, J. Noise model based v-support vector regression with its application to short-term wind speed forecasting. Neural Netw. 2014, 57, 1-11.
-
(2014)
Neural Netw.
, vol.57
, pp. 1-11
-
-
Hu, Q.H.1
Zhang, S.G.2
Xie, Z.X.3
Mi, J.S.4
Wan, J.5
|