메뉴 건너뛰기




Volumn 112, Issue , 2016, Pages 208-219

Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods

Author keywords

Combined forecasting model; Probabilistic interval prediction; Quantile regression averaging; Self adaptive multi strategy differential evolution; Variational mode decomposition; Wind power

Indexed keywords

ARTIFICIAL INTELLIGENCE; ELECTRIC POWER GENERATION; ENERGY POLICY; EVOLUTIONARY ALGORITHMS; FORECASTING; LEARNING SYSTEMS; OPTIMIZATION; SIGNAL PROCESSING; TIME SERIES ANALYSIS; WIND POWER; WIND TURBINES;

EID: 84955259754     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2016.01.023     Document Type: Article
Times cited : (157)

References (39)
  • 1
    • 84922796172 scopus 로고    scopus 로고
    • Combined forecasting models for wind energy forecasting: A case study in China
    • L. Xiao, J.-Z. Wang, Y. Dong, and J. Wu Combined forecasting models for wind energy forecasting: a case study in China Renew Sustain Energy Rev 44 2015 271 288
    • (2015) Renew Sustain Energy Rev , vol.44 , pp. 271-288
    • Xiao, L.1    Wang, J.-Z.2    Dong, Y.3    Wu, J.4
  • 2
    • 84892960976 scopus 로고    scopus 로고
    • Current status and future advances for wind speed and power forecasting
    • J. Jung, and R.P. Broadwater Current status and future advances for wind speed and power forecasting Renew Sustain Energy Rev 31 2014 762 777
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 762-777
    • Jung, J.1    Broadwater, R.P.2
  • 3
    • 84897459902 scopus 로고    scopus 로고
    • A review of combined approaches for prediction of short-term wind speed and power
    • A. Tascikaraoglu, and M. Uzunoglu A review of combined approaches for prediction of short-term wind speed and power Renew Sustain Energy Rev 34 2014 243 254
    • (2014) Renew Sustain Energy Rev , vol.34 , pp. 243-254
    • Tascikaraoglu, A.1    Uzunoglu, M.2
  • 4
    • 84921521797 scopus 로고    scopus 로고
    • Short-term load forecasting by wavelet transform and evolutionary extreme learning machine
    • S. Li, P. Wang, and L. Goel Short-term load forecasting by wavelet transform and evolutionary extreme learning machine Electr Power Syst Res 122 2015 96 103
    • (2015) Electr Power Syst Res , vol.122 , pp. 96-103
    • Li, S.1    Wang, P.2    Goel, L.3
  • 5
    • 84922362244 scopus 로고    scopus 로고
    • The study and application of a novel hybrid forecasting model - A case study of wind speed forecasting in China
    • J.-Z. Wang, Y. Wang, and P. Jiang The study and application of a novel hybrid forecasting model - a case study of wind speed forecasting in China Appl Energy 143 2015 472 488
    • (2015) Appl Energy , vol.143 , pp. 472-488
    • Wang, J.-Z.1    Wang, Y.2    Jiang, P.3
  • 7
    • 84893188504 scopus 로고    scopus 로고
    • A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network
    • Wang Y, Wang S, Zhang N. A novel wind speed forecasting method based on ensemble empirical mode decomposition and GA-BP neural network. In: IEEE power and energy society general meeting; 2013.
    • (2013) IEEE Power and Energy Society General Meeting;
    • Wang, Y.1    Wang, S.2    Zhang, N.3
  • 8
    • 77958190421 scopus 로고    scopus 로고
    • Very short-term wind power forecasting with neural networks and adaptive Bayesian learning
    • R. Blonbou Very short-term wind power forecasting with neural networks and adaptive Bayesian learning Renew Energy 36 2011 1118 1124
    • (2011) Renew Energy , vol.36 , pp. 1118-1124
    • Blonbou, R.1
  • 10
    • 84903179521 scopus 로고    scopus 로고
    • A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
    • Z.-Y. Su, J.-Z. Wang, H.-Y. Lu, and G. Zhao A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting Energy Convers Manage 85 2014 443 452
    • (2014) Energy Convers Manage , vol.85 , pp. 443-452
    • Su, Z.-Y.1    Wang, J.-Z.2    Lu, H.-Y.3    Zhao, G.4
  • 11
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • G.J. Osório, J.C.O. Matias, and J.P.S. Cataləo Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information Renew Energy 75 2015 301 307
    • (2015) Renew Energy , vol.75 , pp. 301-307
    • Osório, G.J.1    Matias, J.C.O.2    Cataləo, J.P.S.3
  • 13
    • 79955575020 scopus 로고    scopus 로고
    • Intelligent prognostics for battery health monitoring based on sample entropy
    • A. Widodo, M.C. Shim, W. Caesarendra, and B.S. Yang Intelligent prognostics for battery health monitoring based on sample entropy Expert Syst Appl 38 2011 11280 11285
    • (2011) Expert Syst Appl , vol.38 , pp. 11280-11285
    • Widodo, A.1    Shim, M.C.2    Caesarendra, W.3    Yang, B.S.4
  • 14
    • 84928984467 scopus 로고    scopus 로고
    • Interval forecasts of a novelty hybrid model for wind speeds
    • S.-S. Qin, F. Liu, J.-Z. Wang, and Y.-L. Song Interval forecasts of a novelty hybrid model for wind speeds Energy Rep 1 2015 8 16
    • (2015) Energy Rep , vol.1 , pp. 8-16
    • Qin, S.-S.1    Liu, F.2    Wang, J.-Z.3    Song, Y.-L.4
  • 15
    • 84881341396 scopus 로고    scopus 로고
    • Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
    • J. Yan, Y.-Q. Liu, S. Han, and M. Qiu Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine Renew Sustain Energy Rev 27 2013 613 621
    • (2013) Renew Sustain Energy Rev , vol.27 , pp. 613-621
    • Yan, J.1    Liu, Y.-Q.2    Han, S.3    Qiu, M.4
  • 16
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein Distributed optimization and statistical learning via the alternating direction method of multipliers Found Trends Mach Learn 3 2010 1 122
    • (2010) Found Trends Mach Learn , vol.3 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 20
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew Extreme learning machine: theory and applications Neurocomputing 70 2006 489 501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 22
    • 84919701228 scopus 로고    scopus 로고
    • An effective semi-cross-validation model selection method for extreme learning machine with ridge regression
    • Z.-F. Shao, M.J. Er, and N. Wang An effective semi-cross-validation model selection method for extreme learning machine with ridge regression Neurocomputing 151 2015 933 942
    • (2015) Neurocomputing , vol.151 , pp. 933-942
    • Shao, Z.-F.1    Er, M.J.2    Wang, N.3
  • 23
    • 73049101183 scopus 로고
    • Differential evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces
    • R. Storn, and K. Price Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces J Glob Optim 1995
    • (1995) J Glob Optim
    • Storn, R.1    Price, K.2
  • 24
    • 84855977752 scopus 로고    scopus 로고
    • Multi-objective hybrid evolutionary algorithms for radial basis function neural network design
    • S.N. Qasem, S.M. Shamsuddin, and A.M. Zain Multi-objective hybrid evolutionary algorithms for radial basis function neural network design Knowl Syst 27 2012 475 497
    • (2012) Knowl Syst , vol.27 , pp. 475-497
    • Qasem, S.N.1    Shamsuddin, S.M.2    Zain, A.M.3
  • 25
    • 84922887206 scopus 로고    scopus 로고
    • Fast detection of human using differential evolution
    • N. Chen, W.-N. Chen, and J. Zhang Fast detection of human using differential evolution Signal Process 110 2015 155 163
    • (2015) Signal Process , vol.110 , pp. 155-163
    • Chen, N.1    Chen, W.-N.2    Zhang, J.3
  • 26
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • A. Qin, V. Huang, and P. Suganthan Differential evolution algorithm with strategy adaptation for global numerical optimization IEEE Trans Evol Comput 13 2009 398 417
    • (2009) IEEE Trans Evol Comput , vol.13 , pp. 398-417
    • Qin, A.1    Huang, V.2    Suganthan, P.3
  • 27
    • 0042229134 scopus 로고    scopus 로고
    • A chaotic approach to maintain the population diversity of genetic algorithm in network training
    • Q.-Z. Lü, G.-L. Shen, and R.-Q. Yu A chaotic approach to maintain the population diversity of genetic algorithm in network training Comput Biol Chem 27 2013 363 371
    • (2013) Comput Biol Chem , vol.27 , pp. 363-371
    • Lü, Q.-Z.1    Shen, G.-L.2    Yu, R.-Q.3
  • 28
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • W.-C. Hong Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model Energy Convers Manage 50 2009 105 117
    • (2009) Energy Convers Manage , vol.50 , pp. 105-117
    • Hong, W.-C.1
  • 30
    • 84993163338 scopus 로고    scopus 로고
    • Computing electricity spot price prediction intervals using quantile regression and forecast averaging
    • J. Nowotarski, and R. Weron Computing electricity spot price prediction intervals using quantile regression and forecast averaging Comput Stat 2014
    • (2014) Comput Stat
    • Nowotarski, J.1    Weron, R.2
  • 31
    • 84555206195 scopus 로고    scopus 로고
    • Review of evaluation criteria and main methods of wind power forecasting
    • X. Zhao, S.-X. Wang, and T. Li Review of evaluation criteria and main methods of wind power forecasting Energy Procedia 12 2011 761 769
    • (2011) Energy Procedia , vol.12 , pp. 761-769
    • Zhao, X.1    Wang, S.-X.2    Li, T.3
  • 32
    • 0032729317 scopus 로고    scopus 로고
    • Coefficient of cross correlation and the time domain correspondence
    • L. Li, and G. Caldwell Coefficient of cross correlation and the time domain correspondence J Electromyogr Kinesiol 9 1999 385 389
    • (1999) J Electromyogr Kinesiol , vol.9 , pp. 385-389
    • Li, L.1    Caldwell, G.2
  • 33
    • 84930947539 scopus 로고    scopus 로고
    • New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks
    • H. Liu, H. Tian, X. Liang, and Y. Li New wind speed forecasting approaches using fast ensemble empirical model decomposition, genetic algorithm, mind evolutionary algorithm and artificial neural networks Renew Energy 83 2015 1066 1075
    • (2015) Renew Energy , vol.83 , pp. 1066-1075
    • Liu, H.1    Tian, H.2    Liang, X.3    Li, Y.4
  • 34
    • 77954834717 scopus 로고    scopus 로고
    • Construction of optimal prediction intervals for load forecasting problem
    • A. Khosravi, S. Nahavandi, and D. Creighton Construction of optimal prediction intervals for load forecasting problem IEEE Trans Power Syst 25 2010 1496 1503
    • (2010) IEEE Trans Power Syst , vol.25 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 35
    • 0040315167 scopus 로고    scopus 로고
    • Nonlinear dynamics, delay times, and embedding windows
    • H.S. Kim, R. Eykholt, and J.D. Salas Nonlinear dynamics, delay times, and embedding windows Physica D 127 1999 48 60
    • (1999) Physica D , vol.127 , pp. 48-60
    • Kim, H.S.1    Eykholt, R.2    Salas, J.D.3
  • 36
    • 75149116606 scopus 로고    scopus 로고
    • An artificial neural network approach for short-term wind power forecasting in Portugal
    • J. Catalão, H. Pousinho, and V. Mendes An artificial neural network approach for short-term wind power forecasting in Portugal Eng Intell Syst Electr Eng Commun 17 2009 1 5
    • (2009) Eng Intell Syst Electr Eng Commun , vol.17 , pp. 1-5
    • Catalão, J.1    Pousinho, H.2    Mendes, V.3
  • 38
    • 33747604390 scopus 로고    scopus 로고
    • Grey predictor for wind energy conversion systems output power prediction
    • T. EI-Fouly, E. EI-Saadany, and M. Salama Grey predictor for wind energy conversion systems output power prediction IEEE Trans Power Syst 21 2006 1450 1452
    • (2006) IEEE Trans Power Syst , vol.21 , pp. 1450-1452
    • EI-Fouly, T.1    EI-Saadany, E.2    Salama, M.3
  • 39
    • 58349084292 scopus 로고    scopus 로고
    • Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization
    • J. Zhou, R. Fang, Y. Li, Y. Zhang, and B. Peng Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization Appl Math Comput 207 2009 292 299
    • (2009) Appl Math Comput , vol.207 , pp. 292-299
    • Zhou, J.1    Fang, R.2    Li, Y.3    Zhang, Y.4    Peng, B.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.